yahyaabd's picture
Add new SentenceTransformer model
11312cc verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2436
  - loss:CosineSimilarityLoss
base_model: yahyaabd/allstats-search-mini-v1-1-mnrl
widget:
  - source_sentence: >-
      Persentase penduduk usia 15-24 tahun di Kota Bandar Lampung yang tidak
      sekolah dan tidak bekerja (NEET) adalah 10%.
    sentences:
      - >-
        Lembaga layanan menerima sekitar sepuluh ribu pengaduan kekerasan
        terhadap perempuan pada 2023.
      - >-
        Volume sampah plastik yang dihasilkan Kota Bandar Lampung setiap hari
        mencapai 100 ton.
      - >-
        Komponen volatile foods mengalami deflasi 0,5 persen secara bulanan pada
        Mei 2025.
  - source_sentence: >-
      Jumlah pengaduan kasus pencemaran lingkungan yang diterima KLHK pada tahun
      2023 sebanyak 1.500 kasus.
    sentences:
      - >-
        Kualitas air laut di Teluk Jakarta tercemar berat akibat limbah industri
        dan domestik dari daratan.
      - >-
        Statistik Pengaduan Lingkungan Hidup: Jumlah Kasus Pencemaran Air,
        Udara, dan Limbah B3 Menurut Provinsi dan Status Tindak Lanjut, Tahun
        2023
      - >-
        Sosialisasi peta rawan bencana kepada masyarakat di daerah rentan perlu
        ditingkatkan untuk meningkatkan kesiapsiagaan.
  - source_sentence: >-
      Pulau Lombok di Provinsi Nusa Tenggara Barat (NTB) memiliki Gunung
      Rinjani.
    sentences:
      - >-
        Sektor yang paling diminati investor PMDN tahun 2023 adalah industri
        pengolahan.
      - >-
        Persentase Penduduk Usia 25 Tahun Ke Atas Menurut Tingkat Pendidikan
        Tertinggi yang Ditamatkan (Termasuk S1), Indonesia, 2024
      - Ayam Taliwang adalah kuliner pedas khas NTB.
  - source_sentence: >-
      Luas terumbu karang yang mengalami pemutihan (bleaching) di perairan Raja
      Ampat pada awal tahun 2024 mencapai 5% dari total area.
    sentences:
      - Jumlah Pompa Air dan Kapasitasnya untuk Penanganan Banjir Jakarta
      - >-
        Kenaikan harga tiket pesawat rute Palembang-Jakarta terjadi menjelang
        libur Idul Adha.
      - >-
        Sekitar 5 persen dari total area terumbu karang di Raja Ampat terdampak
        fenomena pemutihan pada awal 2024.
  - source_sentence: >-
      PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi
      dunia.
    sentences:
      - >-
        Persentase Penduduk Lanjut Usia (60 Tahun Ke Atas) Menurut Provinsi
        (dalam Statistik Penduduk Lanjut Usia Indonesia 2023)
      - Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.
      - >-
        The Riau Islands province is known for its beautiful beaches and marine
        tourism.
datasets:
  - yahyaabd/BPS-STS-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8598548892892474
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8569191140389504
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.8884601567043606
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8818393243914469
            name: Spearman Cosine

SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl

This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-sts-dataset-v1 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-1")
# Run inference
sentences = [
    'PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi dunia.',
    'The Riau Islands province is known for its beautiful beaches and marine tourism.',
    'Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.8599 0.8885
spearman_cosine 0.8569 0.8818

Training Details

Training Dataset

bps-sts-dataset-v1

  • Dataset: bps-sts-dataset-v1 at 5c8f96e
  • Size: 2,436 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 20.49 tokens
    • max: 36 tokens
    • min: 9 tokens
    • mean: 20.71 tokens
    • max: 45 tokens
    • min: 0.0
    • mean: 0.51
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    bagaimana capaian Tujuan Pembangunan Berkelanjutan di Indonesia? Laporan Pencapaian Indikator Tujuan Pembangunan Berkelanjutan (TPB/SDGs) Indonesia, Edisi 2024 0.8
    Jumlah perpustakaan umum di Indonesia tahun 2022 sebanyak 170.000 unit. Minat baca masyarakat Indonesia masih perlu ditingkatkan melalui berbagai program literasi. 0.4
    Jumlah sekolah negeri jenjang SMP di Kota Bandar Lampung adalah 30 sekolah. Laju deforestasi di Provinsi Kalimantan Tengah masih mengkhawatirkan. 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

bps-sts-dataset-v1

  • Dataset: bps-sts-dataset-v1 at 5c8f96e
  • Size: 522 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 522 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 9 tokens
    • mean: 20.83 tokens
    • max: 39 tokens
    • min: 8 tokens
    • mean: 20.84 tokens
    • max: 44 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Persentase desa yang memiliki fasilitas internet di Provinsi Y pada tahun 2021 adalah 85%. Luas perkebunan kelapa sawit di Provinsi Y pada tahun 2021 adalah 500.000 hektar. 0.2
    Kontribusi sektor UMKM terhadap PDRB Kota Malang pada tahun 2023 sebesar 60%. Usaha Mikro, Kecil, dan Menengah menyumbang 60 persen terhadap total Produk Domestik Regional Bruto di kota pendidikan Malang pada tahun 2023. 1.0
    Jumlah Industri Kecil dan Menengah (IKM) di Kabupaten Tegal, Jawa Tengah, bertambah 200 unit pada tahun 2024. Di Tegal, sebuah kabupaten di Jateng, terjadi penambahan 200 unit IKM sepanjang tahun 2024. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 1e-05
  • num_train_epochs: 6
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • label_smoothing_factor: 0.01
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.01
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - 0.0588 0.7404 -
0.0654 10 0.0541 0.0586 0.7412 -
0.1307 20 0.0546 0.0579 0.7444 -
0.1961 30 0.0441 0.0565 0.7500 -
0.2614 40 0.0503 0.0546 0.7580 -
0.3268 50 0.0546 0.0528 0.7648 -
0.3922 60 0.0538 0.0509 0.7739 -
0.4575 70 0.0455 0.0490 0.7834 -
0.5229 80 0.0471 0.0472 0.7925 -
0.5882 90 0.0417 0.0455 0.8017 -
0.6536 100 0.0427 0.0441 0.8095 -
0.7190 110 0.0445 0.0432 0.8138 -
0.7843 120 0.0382 0.0425 0.8168 -
0.8497 130 0.0443 0.0413 0.8220 -
0.9150 140 0.0449 0.0405 0.8264 -
0.9804 150 0.0407 0.0401 0.8287 -
1.0458 160 0.0377 0.0400 0.8312 -
1.1111 170 0.0285 0.0392 0.8327 -
1.1765 180 0.033 0.0389 0.8329 -
1.2418 190 0.0299 0.0388 0.8331 -
1.3072 200 0.029 0.0387 0.8333 -
1.3725 210 0.031 0.0384 0.8340 -
1.4379 220 0.0274 0.0384 0.8351 -
1.5033 230 0.0312 0.0382 0.8367 -
1.5686 240 0.0301 0.0378 0.8383 -
1.6340 250 0.0304 0.0375 0.8390 -
1.6993 260 0.0226 0.0374 0.8389 -
1.7647 270 0.0264 0.0373 0.8399 -
1.8301 280 0.0295 0.0370 0.8418 -
1.8954 290 0.0298 0.0368 0.8419 -
1.9608 300 0.0291 0.0366 0.8422 -
2.0261 310 0.0279 0.0365 0.8426 -
2.0915 320 0.0231 0.0363 0.8432 -
2.1569 330 0.0249 0.0361 0.8446 -
2.2222 340 0.0253 0.0359 0.8454 -
2.2876 350 0.024 0.0358 0.8463 -
2.3529 360 0.0239 0.0357 0.8471 -
2.4183 370 0.0222 0.0355 0.8473 -
2.4837 380 0.0284 0.0354 0.8476 -
2.5490 390 0.0176 0.0353 0.8486 -
2.6144 400 0.0184 0.0352 0.8489 -
2.6797 410 0.023 0.0351 0.8495 -
2.7451 420 0.0201 0.0351 0.8494 -
2.8105 430 0.0252 0.0351 0.8499 -
2.8758 440 0.0206 0.0350 0.8503 -
2.9412 450 0.0188 0.0350 0.8499 -
3.0065 460 0.017 0.0348 0.8501 -
3.0719 470 0.0174 0.0347 0.8505 -
3.1373 480 0.0171 0.0345 0.8515 -
3.2026 490 0.0226 0.0344 0.8520 -
3.2680 500 0.0233 0.0344 0.8520 -
3.3333 510 0.0177 0.0344 0.8523 -
3.3987 520 0.0155 0.0343 0.8522 -
3.4641 530 0.0155 0.0344 0.8522 -
3.5294 540 0.0249 0.0343 0.8523 -
3.5948 550 0.0177 0.0343 0.8522 -
3.6601 560 0.0149 0.0343 0.8520 -
3.7255 570 0.0178 0.0343 0.8517 -
3.7908 580 0.0181 0.0343 0.8520 -
3.8562 590 0.018 0.0342 0.8525 -
3.9216 600 0.0178 0.0341 0.8525 -
3.9869 610 0.0225 0.0340 0.8530 -
4.0523 620 0.0194 0.0339 0.8541 -
4.1176 630 0.0145 0.0338 0.8548 -
4.1830 640 0.0151 0.0337 0.8554 -
4.2484 650 0.0187 0.0336 0.8560 -
4.3137 660 0.0142 0.0336 0.8561 -
4.3791 670 0.0162 0.0336 0.8557 -
4.4444 680 0.0167 0.0335 0.8558 -
4.5098 690 0.013 0.0335 0.8555 -
4.5752 700 0.0174 0.0336 0.8555 -
4.6405 710 0.0156 0.0336 0.8556 -
4.7059 720 0.0155 0.0336 0.8555 -
4.7712 730 0.0179 0.0336 0.8553 -
4.8366 740 0.0158 0.0335 0.8553 -
4.9020 750 0.0143 0.0335 0.8553 -
4.9673 760 0.019 0.0335 0.8557 -
5.0327 770 0.0143 0.0334 0.8559 -
5.0980 780 0.0136 0.0334 0.8559 -
5.1634 790 0.0138 0.0334 0.8560 -
5.2288 800 0.0134 0.0333 0.8561 -
5.2941 810 0.0173 0.0333 0.8563 -
5.3595 820 0.0128 0.0333 0.8562 -
5.4248 830 0.0145 0.0333 0.8564 -
5.4902 840 0.0153 0.0333 0.8566 -
5.5556 850 0.0166 0.0333 0.8566 -
5.6209 860 0.0179 0.0332 0.8569 -
5.6863 870 0.0151 0.0332 0.8569 -
5.7516 880 0.0168 0.0332 0.8570 -
5.8170 890 0.0129 0.0332 0.8570 -
5.8824 900 0.015 0.0332 0.8569 -
5.9477 910 0.0148 0.0332 0.8569 -
-1 -1 - - - 0.8818
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 3.4.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}