metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2436
- loss:CosineSimilarityLoss
base_model: yahyaabd/allstats-search-mini-v1-1-mnrl
widget:
- source_sentence: >-
Persentase penduduk usia 15-24 tahun di Kota Bandar Lampung yang tidak
sekolah dan tidak bekerja (NEET) adalah 10%.
sentences:
- >-
Lembaga layanan menerima sekitar sepuluh ribu pengaduan kekerasan
terhadap perempuan pada 2023.
- >-
Volume sampah plastik yang dihasilkan Kota Bandar Lampung setiap hari
mencapai 100 ton.
- >-
Komponen volatile foods mengalami deflasi 0,5 persen secara bulanan pada
Mei 2025.
- source_sentence: >-
Jumlah pengaduan kasus pencemaran lingkungan yang diterima KLHK pada tahun
2023 sebanyak 1.500 kasus.
sentences:
- >-
Kualitas air laut di Teluk Jakarta tercemar berat akibat limbah industri
dan domestik dari daratan.
- >-
Statistik Pengaduan Lingkungan Hidup: Jumlah Kasus Pencemaran Air,
Udara, dan Limbah B3 Menurut Provinsi dan Status Tindak Lanjut, Tahun
2023
- >-
Sosialisasi peta rawan bencana kepada masyarakat di daerah rentan perlu
ditingkatkan untuk meningkatkan kesiapsiagaan.
- source_sentence: >-
Pulau Lombok di Provinsi Nusa Tenggara Barat (NTB) memiliki Gunung
Rinjani.
sentences:
- >-
Sektor yang paling diminati investor PMDN tahun 2023 adalah industri
pengolahan.
- >-
Persentase Penduduk Usia 25 Tahun Ke Atas Menurut Tingkat Pendidikan
Tertinggi yang Ditamatkan (Termasuk S1), Indonesia, 2024
- Ayam Taliwang adalah kuliner pedas khas NTB.
- source_sentence: >-
Luas terumbu karang yang mengalami pemutihan (bleaching) di perairan Raja
Ampat pada awal tahun 2024 mencapai 5% dari total area.
sentences:
- Jumlah Pompa Air dan Kapasitasnya untuk Penanganan Banjir Jakarta
- >-
Kenaikan harga tiket pesawat rute Palembang-Jakarta terjadi menjelang
libur Idul Adha.
- >-
Sekitar 5 persen dari total area terumbu karang di Raja Ampat terdampak
fenomena pemutihan pada awal 2024.
- source_sentence: >-
PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi
dunia.
sentences:
- >-
Persentase Penduduk Lanjut Usia (60 Tahun Ke Atas) Menurut Provinsi
(dalam Statistik Penduduk Lanjut Usia Indonesia 2023)
- Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.
- >-
The Riau Islands province is known for its beautiful beaches and marine
tourism.
datasets:
- yahyaabd/BPS-STS-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8598548892892474
name: Pearson Cosine
- type: spearman_cosine
value: 0.8569191140389504
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8884601567043606
name: Pearson Cosine
- type: spearman_cosine
value: 0.8818393243914469
name: Spearman Cosine
SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-sts-dataset-v1 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/allstats-search-mini-v1-1-mnrl
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-1")
# Run inference
sentences = [
'PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi dunia.',
'The Riau Islands province is known for its beautiful beaches and marine tourism.',
'Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.8599 | 0.8885 |
| spearman_cosine | 0.8569 | 0.8818 |
Training Details
Training Dataset
bps-sts-dataset-v1
- Dataset: bps-sts-dataset-v1 at 5c8f96e
- Size: 2,436 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 20.49 tokens
- max: 36 tokens
- min: 9 tokens
- mean: 20.71 tokens
- max: 45 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score bagaimana capaian Tujuan Pembangunan Berkelanjutan di Indonesia?Laporan Pencapaian Indikator Tujuan Pembangunan Berkelanjutan (TPB/SDGs) Indonesia, Edisi 20240.8Jumlah perpustakaan umum di Indonesia tahun 2022 sebanyak 170.000 unit.Minat baca masyarakat Indonesia masih perlu ditingkatkan melalui berbagai program literasi.0.4Jumlah sekolah negeri jenjang SMP di Kota Bandar Lampung adalah 30 sekolah.Laju deforestasi di Provinsi Kalimantan Tengah masih mengkhawatirkan.0.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-sts-dataset-v1
- Dataset: bps-sts-dataset-v1 at 5c8f96e
- Size: 522 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 522 samples:
sentence1 sentence2 score type string string float details - min: 9 tokens
- mean: 20.83 tokens
- max: 39 tokens
- min: 8 tokens
- mean: 20.84 tokens
- max: 44 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score Persentase desa yang memiliki fasilitas internet di Provinsi Y pada tahun 2021 adalah 85%.Luas perkebunan kelapa sawit di Provinsi Y pada tahun 2021 adalah 500.000 hektar.0.2Kontribusi sektor UMKM terhadap PDRB Kota Malang pada tahun 2023 sebesar 60%.Usaha Mikro, Kecil, dan Menengah menyumbang 60 persen terhadap total Produk Domestik Regional Bruto di kota pendidikan Malang pada tahun 2023.1.0Jumlah Industri Kecil dan Menengah (IKM) di Kabupaten Tegal, Jawa Tengah, bertambah 200 unit pada tahun 2024.Di Tegal, sebuah kabupaten di Jateng, terjadi penambahan 200 unit IKM sepanjang tahun 2024.1.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 1e-05num_train_epochs: 6warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truelabel_smoothing_factor: 0.01eval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 6max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.01optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | 0.0588 | 0.7404 | - |
| 0.0654 | 10 | 0.0541 | 0.0586 | 0.7412 | - |
| 0.1307 | 20 | 0.0546 | 0.0579 | 0.7444 | - |
| 0.1961 | 30 | 0.0441 | 0.0565 | 0.7500 | - |
| 0.2614 | 40 | 0.0503 | 0.0546 | 0.7580 | - |
| 0.3268 | 50 | 0.0546 | 0.0528 | 0.7648 | - |
| 0.3922 | 60 | 0.0538 | 0.0509 | 0.7739 | - |
| 0.4575 | 70 | 0.0455 | 0.0490 | 0.7834 | - |
| 0.5229 | 80 | 0.0471 | 0.0472 | 0.7925 | - |
| 0.5882 | 90 | 0.0417 | 0.0455 | 0.8017 | - |
| 0.6536 | 100 | 0.0427 | 0.0441 | 0.8095 | - |
| 0.7190 | 110 | 0.0445 | 0.0432 | 0.8138 | - |
| 0.7843 | 120 | 0.0382 | 0.0425 | 0.8168 | - |
| 0.8497 | 130 | 0.0443 | 0.0413 | 0.8220 | - |
| 0.9150 | 140 | 0.0449 | 0.0405 | 0.8264 | - |
| 0.9804 | 150 | 0.0407 | 0.0401 | 0.8287 | - |
| 1.0458 | 160 | 0.0377 | 0.0400 | 0.8312 | - |
| 1.1111 | 170 | 0.0285 | 0.0392 | 0.8327 | - |
| 1.1765 | 180 | 0.033 | 0.0389 | 0.8329 | - |
| 1.2418 | 190 | 0.0299 | 0.0388 | 0.8331 | - |
| 1.3072 | 200 | 0.029 | 0.0387 | 0.8333 | - |
| 1.3725 | 210 | 0.031 | 0.0384 | 0.8340 | - |
| 1.4379 | 220 | 0.0274 | 0.0384 | 0.8351 | - |
| 1.5033 | 230 | 0.0312 | 0.0382 | 0.8367 | - |
| 1.5686 | 240 | 0.0301 | 0.0378 | 0.8383 | - |
| 1.6340 | 250 | 0.0304 | 0.0375 | 0.8390 | - |
| 1.6993 | 260 | 0.0226 | 0.0374 | 0.8389 | - |
| 1.7647 | 270 | 0.0264 | 0.0373 | 0.8399 | - |
| 1.8301 | 280 | 0.0295 | 0.0370 | 0.8418 | - |
| 1.8954 | 290 | 0.0298 | 0.0368 | 0.8419 | - |
| 1.9608 | 300 | 0.0291 | 0.0366 | 0.8422 | - |
| 2.0261 | 310 | 0.0279 | 0.0365 | 0.8426 | - |
| 2.0915 | 320 | 0.0231 | 0.0363 | 0.8432 | - |
| 2.1569 | 330 | 0.0249 | 0.0361 | 0.8446 | - |
| 2.2222 | 340 | 0.0253 | 0.0359 | 0.8454 | - |
| 2.2876 | 350 | 0.024 | 0.0358 | 0.8463 | - |
| 2.3529 | 360 | 0.0239 | 0.0357 | 0.8471 | - |
| 2.4183 | 370 | 0.0222 | 0.0355 | 0.8473 | - |
| 2.4837 | 380 | 0.0284 | 0.0354 | 0.8476 | - |
| 2.5490 | 390 | 0.0176 | 0.0353 | 0.8486 | - |
| 2.6144 | 400 | 0.0184 | 0.0352 | 0.8489 | - |
| 2.6797 | 410 | 0.023 | 0.0351 | 0.8495 | - |
| 2.7451 | 420 | 0.0201 | 0.0351 | 0.8494 | - |
| 2.8105 | 430 | 0.0252 | 0.0351 | 0.8499 | - |
| 2.8758 | 440 | 0.0206 | 0.0350 | 0.8503 | - |
| 2.9412 | 450 | 0.0188 | 0.0350 | 0.8499 | - |
| 3.0065 | 460 | 0.017 | 0.0348 | 0.8501 | - |
| 3.0719 | 470 | 0.0174 | 0.0347 | 0.8505 | - |
| 3.1373 | 480 | 0.0171 | 0.0345 | 0.8515 | - |
| 3.2026 | 490 | 0.0226 | 0.0344 | 0.8520 | - |
| 3.2680 | 500 | 0.0233 | 0.0344 | 0.8520 | - |
| 3.3333 | 510 | 0.0177 | 0.0344 | 0.8523 | - |
| 3.3987 | 520 | 0.0155 | 0.0343 | 0.8522 | - |
| 3.4641 | 530 | 0.0155 | 0.0344 | 0.8522 | - |
| 3.5294 | 540 | 0.0249 | 0.0343 | 0.8523 | - |
| 3.5948 | 550 | 0.0177 | 0.0343 | 0.8522 | - |
| 3.6601 | 560 | 0.0149 | 0.0343 | 0.8520 | - |
| 3.7255 | 570 | 0.0178 | 0.0343 | 0.8517 | - |
| 3.7908 | 580 | 0.0181 | 0.0343 | 0.8520 | - |
| 3.8562 | 590 | 0.018 | 0.0342 | 0.8525 | - |
| 3.9216 | 600 | 0.0178 | 0.0341 | 0.8525 | - |
| 3.9869 | 610 | 0.0225 | 0.0340 | 0.8530 | - |
| 4.0523 | 620 | 0.0194 | 0.0339 | 0.8541 | - |
| 4.1176 | 630 | 0.0145 | 0.0338 | 0.8548 | - |
| 4.1830 | 640 | 0.0151 | 0.0337 | 0.8554 | - |
| 4.2484 | 650 | 0.0187 | 0.0336 | 0.8560 | - |
| 4.3137 | 660 | 0.0142 | 0.0336 | 0.8561 | - |
| 4.3791 | 670 | 0.0162 | 0.0336 | 0.8557 | - |
| 4.4444 | 680 | 0.0167 | 0.0335 | 0.8558 | - |
| 4.5098 | 690 | 0.013 | 0.0335 | 0.8555 | - |
| 4.5752 | 700 | 0.0174 | 0.0336 | 0.8555 | - |
| 4.6405 | 710 | 0.0156 | 0.0336 | 0.8556 | - |
| 4.7059 | 720 | 0.0155 | 0.0336 | 0.8555 | - |
| 4.7712 | 730 | 0.0179 | 0.0336 | 0.8553 | - |
| 4.8366 | 740 | 0.0158 | 0.0335 | 0.8553 | - |
| 4.9020 | 750 | 0.0143 | 0.0335 | 0.8553 | - |
| 4.9673 | 760 | 0.019 | 0.0335 | 0.8557 | - |
| 5.0327 | 770 | 0.0143 | 0.0334 | 0.8559 | - |
| 5.0980 | 780 | 0.0136 | 0.0334 | 0.8559 | - |
| 5.1634 | 790 | 0.0138 | 0.0334 | 0.8560 | - |
| 5.2288 | 800 | 0.0134 | 0.0333 | 0.8561 | - |
| 5.2941 | 810 | 0.0173 | 0.0333 | 0.8563 | - |
| 5.3595 | 820 | 0.0128 | 0.0333 | 0.8562 | - |
| 5.4248 | 830 | 0.0145 | 0.0333 | 0.8564 | - |
| 5.4902 | 840 | 0.0153 | 0.0333 | 0.8566 | - |
| 5.5556 | 850 | 0.0166 | 0.0333 | 0.8566 | - |
| 5.6209 | 860 | 0.0179 | 0.0332 | 0.8569 | - |
| 5.6863 | 870 | 0.0151 | 0.0332 | 0.8569 | - |
| 5.7516 | 880 | 0.0168 | 0.0332 | 0.8570 | - |
| 5.8170 | 890 | 0.0129 | 0.0332 | 0.8570 | - |
| 5.8824 | 900 | 0.015 | 0.0332 | 0.8569 | - |
| 5.9477 | 910 | 0.0148 | 0.0332 | 0.8569 | - |
| -1 | -1 | - | - | - | 0.8818 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}