|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:2436 |
|
|
- loss:CosineSimilarityLoss |
|
|
base_model: yahyaabd/allstats-search-mini-v1-1-mnrl |
|
|
widget: |
|
|
- source_sentence: Persentase penduduk usia 15-24 tahun di Kota Bandar Lampung yang |
|
|
tidak sekolah dan tidak bekerja (NEET) adalah 10%. |
|
|
sentences: |
|
|
- Lembaga layanan menerima sekitar sepuluh ribu pengaduan kekerasan terhadap perempuan |
|
|
pada 2023. |
|
|
- Volume sampah plastik yang dihasilkan Kota Bandar Lampung setiap hari mencapai |
|
|
100 ton. |
|
|
- Komponen volatile foods mengalami deflasi 0,5 persen secara bulanan pada Mei 2025. |
|
|
- source_sentence: Jumlah pengaduan kasus pencemaran lingkungan yang diterima KLHK |
|
|
pada tahun 2023 sebanyak 1.500 kasus. |
|
|
sentences: |
|
|
- Kualitas air laut di Teluk Jakarta tercemar berat akibat limbah industri dan domestik |
|
|
dari daratan. |
|
|
- 'Statistik Pengaduan Lingkungan Hidup: Jumlah Kasus Pencemaran Air, Udara, dan |
|
|
Limbah B3 Menurut Provinsi dan Status Tindak Lanjut, Tahun 2023' |
|
|
- Sosialisasi peta rawan bencana kepada masyarakat di daerah rentan perlu ditingkatkan |
|
|
untuk meningkatkan kesiapsiagaan. |
|
|
- source_sentence: Pulau Lombok di Provinsi Nusa Tenggara Barat (NTB) memiliki Gunung |
|
|
Rinjani. |
|
|
sentences: |
|
|
- Sektor yang paling diminati investor PMDN tahun 2023 adalah industri pengolahan. |
|
|
- Persentase Penduduk Usia 25 Tahun Ke Atas Menurut Tingkat Pendidikan Tertinggi |
|
|
yang Ditamatkan (Termasuk S1), Indonesia, 2024 |
|
|
- Ayam Taliwang adalah kuliner pedas khas NTB. |
|
|
- source_sentence: Luas terumbu karang yang mengalami pemutihan (bleaching) di perairan |
|
|
Raja Ampat pada awal tahun 2024 mencapai 5% dari total area. |
|
|
sentences: |
|
|
- Jumlah Pompa Air dan Kapasitasnya untuk Penanganan Banjir Jakarta |
|
|
- Kenaikan harga tiket pesawat rute Palembang-Jakarta terjadi menjelang libur Idul |
|
|
Adha. |
|
|
- Sekitar 5 persen dari total area terumbu karang di Raja Ampat terdampak fenomena |
|
|
pemutihan pada awal 2024. |
|
|
- source_sentence: PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak |
|
|
bumi dunia. |
|
|
sentences: |
|
|
- Persentase Penduduk Lanjut Usia (60 Tahun Ke Atas) Menurut Provinsi (dalam Statistik |
|
|
Penduduk Lanjut Usia Indonesia 2023) |
|
|
- Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%. |
|
|
- The Riau Islands province is known for its beautiful beaches and marine tourism. |
|
|
datasets: |
|
|
- yahyaabd/BPS-STS-dataset-v1 |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- pearson_cosine |
|
|
- spearman_cosine |
|
|
model-index: |
|
|
- name: SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl |
|
|
results: |
|
|
- task: |
|
|
type: semantic-similarity |
|
|
name: Semantic Similarity |
|
|
dataset: |
|
|
name: sts dev |
|
|
type: sts-dev |
|
|
metrics: |
|
|
- type: pearson_cosine |
|
|
value: 0.8598548892892474 |
|
|
name: Pearson Cosine |
|
|
- type: spearman_cosine |
|
|
value: 0.8569191140389504 |
|
|
name: Spearman Cosine |
|
|
- task: |
|
|
type: semantic-similarity |
|
|
name: Semantic Similarity |
|
|
dataset: |
|
|
name: sts test |
|
|
type: sts-test |
|
|
metrics: |
|
|
- type: pearson_cosine |
|
|
value: 0.8884601567043606 |
|
|
name: Pearson Cosine |
|
|
- type: spearman_cosine |
|
|
value: 0.8818393243914469 |
|
|
name: Spearman Cosine |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl) on the [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl) <!-- at revision 117ddf58a25bdde8ba44b3c0e1bff6582bc34d17 --> |
|
|
- **Maximum Sequence Length:** 128 tokens |
|
|
- **Output Dimensionality:** 384 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Dataset:** |
|
|
- [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-1") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi dunia.', |
|
|
'The Riau Islands province is known for its beautiful beaches and marine tourism.', |
|
|
'Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 384] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Semantic Similarity |
|
|
|
|
|
* Datasets: `sts-dev` and `sts-test` |
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
|
|
| Metric | sts-dev | sts-test | |
|
|
|:--------------------|:-----------|:-----------| |
|
|
| pearson_cosine | 0.8599 | 0.8885 | |
|
|
| **spearman_cosine** | **0.8569** | **0.8818** | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### bps-sts-dataset-v1 |
|
|
|
|
|
* Dataset: [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) at [5c8f96e](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1/tree/5c8f96e30c138042010e024d0a04ec82f5b36758) |
|
|
* Size: 2,436 training samples |
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence1 | sentence2 | score | |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 20.49 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.71 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence1 | sentence2 | score | |
|
|
|:-----------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:-----------------| |
|
|
| <code>bagaimana capaian Tujuan Pembangunan Berkelanjutan di Indonesia?</code> | <code>Laporan Pencapaian Indikator Tujuan Pembangunan Berkelanjutan (TPB/SDGs) Indonesia, Edisi 2024</code> | <code>0.8</code> | |
|
|
| <code>Jumlah perpustakaan umum di Indonesia tahun 2022 sebanyak 170.000 unit.</code> | <code>Minat baca masyarakat Indonesia masih perlu ditingkatkan melalui berbagai program literasi.</code> | <code>0.4</code> | |
|
|
| <code>Jumlah sekolah negeri jenjang SMP di Kota Bandar Lampung adalah 30 sekolah.</code> | <code>Laju deforestasi di Provinsi Kalimantan Tengah masih mengkhawatirkan.</code> | <code>0.0</code> | |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Evaluation Dataset |
|
|
|
|
|
#### bps-sts-dataset-v1 |
|
|
|
|
|
* Dataset: [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) at [5c8f96e](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1/tree/5c8f96e30c138042010e024d0a04ec82f5b36758) |
|
|
* Size: 522 evaluation samples |
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
|
* Approximate statistics based on the first 522 samples: |
|
|
| | sentence1 | sentence2 | score | |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 9 tokens</li><li>mean: 20.83 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.84 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence1 | sentence2 | score | |
|
|
|:---------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| |
|
|
| <code>Persentase desa yang memiliki fasilitas internet di Provinsi Y pada tahun 2021 adalah 85%.</code> | <code>Luas perkebunan kelapa sawit di Provinsi Y pada tahun 2021 adalah 500.000 hektar.</code> | <code>0.2</code> | |
|
|
| <code>Kontribusi sektor UMKM terhadap PDRB Kota Malang pada tahun 2023 sebesar 60%.</code> | <code>Usaha Mikro, Kecil, dan Menengah menyumbang 60 persen terhadap total Produk Domestik Regional Bruto di kota pendidikan Malang pada tahun 2023.</code> | <code>1.0</code> | |
|
|
| <code>Jumlah Industri Kecil dan Menengah (IKM) di Kabupaten Tegal, Jawa Tengah, bertambah 200 unit pada tahun 2024.</code> | <code>Di Tegal, sebuah kabupaten di Jateng, terjadi penambahan 200 unit IKM sepanjang tahun 2024.</code> | <code>1.0</code> | |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `learning_rate`: 1e-05 |
|
|
- `num_train_epochs`: 6 |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `fp16`: True |
|
|
- `load_best_model_at_end`: True |
|
|
- `label_smoothing_factor`: 0.01 |
|
|
- `eval_on_start`: True |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 1e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 6 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: True |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `tp_size`: 0 |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.01 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: True |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|
|:----------:|:-------:|:-------------:|:---------------:|:-----------------------:|:------------------------:| |
|
|
| 0 | 0 | - | 0.0588 | 0.7404 | - | |
|
|
| 0.0654 | 10 | 0.0541 | 0.0586 | 0.7412 | - | |
|
|
| 0.1307 | 20 | 0.0546 | 0.0579 | 0.7444 | - | |
|
|
| 0.1961 | 30 | 0.0441 | 0.0565 | 0.7500 | - | |
|
|
| 0.2614 | 40 | 0.0503 | 0.0546 | 0.7580 | - | |
|
|
| 0.3268 | 50 | 0.0546 | 0.0528 | 0.7648 | - | |
|
|
| 0.3922 | 60 | 0.0538 | 0.0509 | 0.7739 | - | |
|
|
| 0.4575 | 70 | 0.0455 | 0.0490 | 0.7834 | - | |
|
|
| 0.5229 | 80 | 0.0471 | 0.0472 | 0.7925 | - | |
|
|
| 0.5882 | 90 | 0.0417 | 0.0455 | 0.8017 | - | |
|
|
| 0.6536 | 100 | 0.0427 | 0.0441 | 0.8095 | - | |
|
|
| 0.7190 | 110 | 0.0445 | 0.0432 | 0.8138 | - | |
|
|
| 0.7843 | 120 | 0.0382 | 0.0425 | 0.8168 | - | |
|
|
| 0.8497 | 130 | 0.0443 | 0.0413 | 0.8220 | - | |
|
|
| 0.9150 | 140 | 0.0449 | 0.0405 | 0.8264 | - | |
|
|
| 0.9804 | 150 | 0.0407 | 0.0401 | 0.8287 | - | |
|
|
| 1.0458 | 160 | 0.0377 | 0.0400 | 0.8312 | - | |
|
|
| 1.1111 | 170 | 0.0285 | 0.0392 | 0.8327 | - | |
|
|
| 1.1765 | 180 | 0.033 | 0.0389 | 0.8329 | - | |
|
|
| 1.2418 | 190 | 0.0299 | 0.0388 | 0.8331 | - | |
|
|
| 1.3072 | 200 | 0.029 | 0.0387 | 0.8333 | - | |
|
|
| 1.3725 | 210 | 0.031 | 0.0384 | 0.8340 | - | |
|
|
| 1.4379 | 220 | 0.0274 | 0.0384 | 0.8351 | - | |
|
|
| 1.5033 | 230 | 0.0312 | 0.0382 | 0.8367 | - | |
|
|
| 1.5686 | 240 | 0.0301 | 0.0378 | 0.8383 | - | |
|
|
| 1.6340 | 250 | 0.0304 | 0.0375 | 0.8390 | - | |
|
|
| 1.6993 | 260 | 0.0226 | 0.0374 | 0.8389 | - | |
|
|
| 1.7647 | 270 | 0.0264 | 0.0373 | 0.8399 | - | |
|
|
| 1.8301 | 280 | 0.0295 | 0.0370 | 0.8418 | - | |
|
|
| 1.8954 | 290 | 0.0298 | 0.0368 | 0.8419 | - | |
|
|
| 1.9608 | 300 | 0.0291 | 0.0366 | 0.8422 | - | |
|
|
| 2.0261 | 310 | 0.0279 | 0.0365 | 0.8426 | - | |
|
|
| 2.0915 | 320 | 0.0231 | 0.0363 | 0.8432 | - | |
|
|
| 2.1569 | 330 | 0.0249 | 0.0361 | 0.8446 | - | |
|
|
| 2.2222 | 340 | 0.0253 | 0.0359 | 0.8454 | - | |
|
|
| 2.2876 | 350 | 0.024 | 0.0358 | 0.8463 | - | |
|
|
| 2.3529 | 360 | 0.0239 | 0.0357 | 0.8471 | - | |
|
|
| 2.4183 | 370 | 0.0222 | 0.0355 | 0.8473 | - | |
|
|
| 2.4837 | 380 | 0.0284 | 0.0354 | 0.8476 | - | |
|
|
| 2.5490 | 390 | 0.0176 | 0.0353 | 0.8486 | - | |
|
|
| 2.6144 | 400 | 0.0184 | 0.0352 | 0.8489 | - | |
|
|
| 2.6797 | 410 | 0.023 | 0.0351 | 0.8495 | - | |
|
|
| 2.7451 | 420 | 0.0201 | 0.0351 | 0.8494 | - | |
|
|
| 2.8105 | 430 | 0.0252 | 0.0351 | 0.8499 | - | |
|
|
| 2.8758 | 440 | 0.0206 | 0.0350 | 0.8503 | - | |
|
|
| 2.9412 | 450 | 0.0188 | 0.0350 | 0.8499 | - | |
|
|
| 3.0065 | 460 | 0.017 | 0.0348 | 0.8501 | - | |
|
|
| 3.0719 | 470 | 0.0174 | 0.0347 | 0.8505 | - | |
|
|
| 3.1373 | 480 | 0.0171 | 0.0345 | 0.8515 | - | |
|
|
| 3.2026 | 490 | 0.0226 | 0.0344 | 0.8520 | - | |
|
|
| 3.2680 | 500 | 0.0233 | 0.0344 | 0.8520 | - | |
|
|
| 3.3333 | 510 | 0.0177 | 0.0344 | 0.8523 | - | |
|
|
| 3.3987 | 520 | 0.0155 | 0.0343 | 0.8522 | - | |
|
|
| 3.4641 | 530 | 0.0155 | 0.0344 | 0.8522 | - | |
|
|
| 3.5294 | 540 | 0.0249 | 0.0343 | 0.8523 | - | |
|
|
| 3.5948 | 550 | 0.0177 | 0.0343 | 0.8522 | - | |
|
|
| 3.6601 | 560 | 0.0149 | 0.0343 | 0.8520 | - | |
|
|
| 3.7255 | 570 | 0.0178 | 0.0343 | 0.8517 | - | |
|
|
| 3.7908 | 580 | 0.0181 | 0.0343 | 0.8520 | - | |
|
|
| 3.8562 | 590 | 0.018 | 0.0342 | 0.8525 | - | |
|
|
| 3.9216 | 600 | 0.0178 | 0.0341 | 0.8525 | - | |
|
|
| 3.9869 | 610 | 0.0225 | 0.0340 | 0.8530 | - | |
|
|
| 4.0523 | 620 | 0.0194 | 0.0339 | 0.8541 | - | |
|
|
| 4.1176 | 630 | 0.0145 | 0.0338 | 0.8548 | - | |
|
|
| 4.1830 | 640 | 0.0151 | 0.0337 | 0.8554 | - | |
|
|
| 4.2484 | 650 | 0.0187 | 0.0336 | 0.8560 | - | |
|
|
| 4.3137 | 660 | 0.0142 | 0.0336 | 0.8561 | - | |
|
|
| 4.3791 | 670 | 0.0162 | 0.0336 | 0.8557 | - | |
|
|
| 4.4444 | 680 | 0.0167 | 0.0335 | 0.8558 | - | |
|
|
| 4.5098 | 690 | 0.013 | 0.0335 | 0.8555 | - | |
|
|
| 4.5752 | 700 | 0.0174 | 0.0336 | 0.8555 | - | |
|
|
| 4.6405 | 710 | 0.0156 | 0.0336 | 0.8556 | - | |
|
|
| 4.7059 | 720 | 0.0155 | 0.0336 | 0.8555 | - | |
|
|
| 4.7712 | 730 | 0.0179 | 0.0336 | 0.8553 | - | |
|
|
| 4.8366 | 740 | 0.0158 | 0.0335 | 0.8553 | - | |
|
|
| 4.9020 | 750 | 0.0143 | 0.0335 | 0.8553 | - | |
|
|
| 4.9673 | 760 | 0.019 | 0.0335 | 0.8557 | - | |
|
|
| 5.0327 | 770 | 0.0143 | 0.0334 | 0.8559 | - | |
|
|
| 5.0980 | 780 | 0.0136 | 0.0334 | 0.8559 | - | |
|
|
| 5.1634 | 790 | 0.0138 | 0.0334 | 0.8560 | - | |
|
|
| 5.2288 | 800 | 0.0134 | 0.0333 | 0.8561 | - | |
|
|
| 5.2941 | 810 | 0.0173 | 0.0333 | 0.8563 | - | |
|
|
| 5.3595 | 820 | 0.0128 | 0.0333 | 0.8562 | - | |
|
|
| 5.4248 | 830 | 0.0145 | 0.0333 | 0.8564 | - | |
|
|
| 5.4902 | 840 | 0.0153 | 0.0333 | 0.8566 | - | |
|
|
| 5.5556 | 850 | 0.0166 | 0.0333 | 0.8566 | - | |
|
|
| 5.6209 | 860 | 0.0179 | 0.0332 | 0.8569 | - | |
|
|
| 5.6863 | 870 | 0.0151 | 0.0332 | 0.8569 | - | |
|
|
| 5.7516 | 880 | 0.0168 | 0.0332 | 0.8570 | - | |
|
|
| 5.8170 | 890 | 0.0129 | 0.0332 | 0.8570 | - | |
|
|
| 5.8824 | 900 | 0.015 | 0.0332 | 0.8569 | - | |
|
|
| **5.9477** | **910** | **0.0148** | **0.0332** | **0.8569** | **-** | |
|
|
| -1 | -1 | - | - | - | 0.8818 | |
|
|
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.12 |
|
|
- Sentence Transformers: 3.4.0 |
|
|
- Transformers: 4.51.3 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.6.0 |
|
|
- Datasets: 3.2.0 |
|
|
- Tokenizers: 0.21.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |