Add new SentenceTransformer model
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +529 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:2436
|
| 8 |
+
- loss:CosineSimilarityLoss
|
| 9 |
+
base_model: yahyaabd/allstats-search-mini-v1-1-mnrl
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Persentase penduduk usia 15-24 tahun di Kota Bandar Lampung yang
|
| 12 |
+
tidak sekolah dan tidak bekerja (NEET) adalah 10%.
|
| 13 |
+
sentences:
|
| 14 |
+
- Lembaga layanan menerima sekitar sepuluh ribu pengaduan kekerasan terhadap perempuan
|
| 15 |
+
pada 2023.
|
| 16 |
+
- Volume sampah plastik yang dihasilkan Kota Bandar Lampung setiap hari mencapai
|
| 17 |
+
100 ton.
|
| 18 |
+
- Komponen volatile foods mengalami deflasi 0,5 persen secara bulanan pada Mei 2025.
|
| 19 |
+
- source_sentence: Jumlah pengaduan kasus pencemaran lingkungan yang diterima KLHK
|
| 20 |
+
pada tahun 2023 sebanyak 1.500 kasus.
|
| 21 |
+
sentences:
|
| 22 |
+
- Kualitas air laut di Teluk Jakarta tercemar berat akibat limbah industri dan domestik
|
| 23 |
+
dari daratan.
|
| 24 |
+
- 'Statistik Pengaduan Lingkungan Hidup: Jumlah Kasus Pencemaran Air, Udara, dan
|
| 25 |
+
Limbah B3 Menurut Provinsi dan Status Tindak Lanjut, Tahun 2023'
|
| 26 |
+
- Sosialisasi peta rawan bencana kepada masyarakat di daerah rentan perlu ditingkatkan
|
| 27 |
+
untuk meningkatkan kesiapsiagaan.
|
| 28 |
+
- source_sentence: Pulau Lombok di Provinsi Nusa Tenggara Barat (NTB) memiliki Gunung
|
| 29 |
+
Rinjani.
|
| 30 |
+
sentences:
|
| 31 |
+
- Sektor yang paling diminati investor PMDN tahun 2023 adalah industri pengolahan.
|
| 32 |
+
- Persentase Penduduk Usia 25 Tahun Ke Atas Menurut Tingkat Pendidikan Tertinggi
|
| 33 |
+
yang Ditamatkan (Termasuk S1), Indonesia, 2024
|
| 34 |
+
- Ayam Taliwang adalah kuliner pedas khas NTB.
|
| 35 |
+
- source_sentence: Luas terumbu karang yang mengalami pemutihan (bleaching) di perairan
|
| 36 |
+
Raja Ampat pada awal tahun 2024 mencapai 5% dari total area.
|
| 37 |
+
sentences:
|
| 38 |
+
- Jumlah Pompa Air dan Kapasitasnya untuk Penanganan Banjir Jakarta
|
| 39 |
+
- Kenaikan harga tiket pesawat rute Palembang-Jakarta terjadi menjelang libur Idul
|
| 40 |
+
Adha.
|
| 41 |
+
- Sekitar 5 persen dari total area terumbu karang di Raja Ampat terdampak fenomena
|
| 42 |
+
pemutihan pada awal 2024.
|
| 43 |
+
- source_sentence: PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak
|
| 44 |
+
bumi dunia.
|
| 45 |
+
sentences:
|
| 46 |
+
- Persentase Penduduk Lanjut Usia (60 Tahun Ke Atas) Menurut Provinsi (dalam Statistik
|
| 47 |
+
Penduduk Lanjut Usia Indonesia 2023)
|
| 48 |
+
- Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.
|
| 49 |
+
- The Riau Islands province is known for its beautiful beaches and marine tourism.
|
| 50 |
+
datasets:
|
| 51 |
+
- yahyaabd/BPS-STS-dataset-v1
|
| 52 |
+
pipeline_tag: sentence-similarity
|
| 53 |
+
library_name: sentence-transformers
|
| 54 |
+
metrics:
|
| 55 |
+
- pearson_cosine
|
| 56 |
+
- spearman_cosine
|
| 57 |
+
model-index:
|
| 58 |
+
- name: SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
|
| 59 |
+
results:
|
| 60 |
+
- task:
|
| 61 |
+
type: semantic-similarity
|
| 62 |
+
name: Semantic Similarity
|
| 63 |
+
dataset:
|
| 64 |
+
name: sts dev
|
| 65 |
+
type: sts-dev
|
| 66 |
+
metrics:
|
| 67 |
+
- type: pearson_cosine
|
| 68 |
+
value: 0.8598548892892474
|
| 69 |
+
name: Pearson Cosine
|
| 70 |
+
- type: spearman_cosine
|
| 71 |
+
value: 0.8569191140389504
|
| 72 |
+
name: Spearman Cosine
|
| 73 |
+
- task:
|
| 74 |
+
type: semantic-similarity
|
| 75 |
+
name: Semantic Similarity
|
| 76 |
+
dataset:
|
| 77 |
+
name: sts test
|
| 78 |
+
type: sts-test
|
| 79 |
+
metrics:
|
| 80 |
+
- type: pearson_cosine
|
| 81 |
+
value: 0.8884601567043606
|
| 82 |
+
name: Pearson Cosine
|
| 83 |
+
- type: spearman_cosine
|
| 84 |
+
value: 0.8818393243914469
|
| 85 |
+
name: Spearman Cosine
|
| 86 |
+
---
|
| 87 |
+
|
| 88 |
+
# SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
|
| 89 |
+
|
| 90 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl) on the [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 91 |
+
|
| 92 |
+
## Model Details
|
| 93 |
+
|
| 94 |
+
### Model Description
|
| 95 |
+
- **Model Type:** Sentence Transformer
|
| 96 |
+
- **Base model:** [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl) <!-- at revision 117ddf58a25bdde8ba44b3c0e1bff6582bc34d17 -->
|
| 97 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 98 |
+
- **Output Dimensionality:** 384 dimensions
|
| 99 |
+
- **Similarity Function:** Cosine Similarity
|
| 100 |
+
- **Training Dataset:**
|
| 101 |
+
- [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1)
|
| 102 |
+
<!-- - **Language:** Unknown -->
|
| 103 |
+
<!-- - **License:** Unknown -->
|
| 104 |
+
|
| 105 |
+
### Model Sources
|
| 106 |
+
|
| 107 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 108 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 109 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 110 |
+
|
| 111 |
+
### Full Model Architecture
|
| 112 |
+
|
| 113 |
+
```
|
| 114 |
+
SentenceTransformer(
|
| 115 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 116 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 117 |
+
)
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
## Usage
|
| 121 |
+
|
| 122 |
+
### Direct Usage (Sentence Transformers)
|
| 123 |
+
|
| 124 |
+
First install the Sentence Transformers library:
|
| 125 |
+
|
| 126 |
+
```bash
|
| 127 |
+
pip install -U sentence-transformers
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
Then you can load this model and run inference.
|
| 131 |
+
```python
|
| 132 |
+
from sentence_transformers import SentenceTransformer
|
| 133 |
+
|
| 134 |
+
# Download from the 🤗 Hub
|
| 135 |
+
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-1")
|
| 136 |
+
# Run inference
|
| 137 |
+
sentences = [
|
| 138 |
+
'PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi dunia.',
|
| 139 |
+
'The Riau Islands province is known for its beautiful beaches and marine tourism.',
|
| 140 |
+
'Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.',
|
| 141 |
+
]
|
| 142 |
+
embeddings = model.encode(sentences)
|
| 143 |
+
print(embeddings.shape)
|
| 144 |
+
# [3, 384]
|
| 145 |
+
|
| 146 |
+
# Get the similarity scores for the embeddings
|
| 147 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 148 |
+
print(similarities.shape)
|
| 149 |
+
# [3, 3]
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
<!--
|
| 153 |
+
### Direct Usage (Transformers)
|
| 154 |
+
|
| 155 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 156 |
+
|
| 157 |
+
</details>
|
| 158 |
+
-->
|
| 159 |
+
|
| 160 |
+
<!--
|
| 161 |
+
### Downstream Usage (Sentence Transformers)
|
| 162 |
+
|
| 163 |
+
You can finetune this model on your own dataset.
|
| 164 |
+
|
| 165 |
+
<details><summary>Click to expand</summary>
|
| 166 |
+
|
| 167 |
+
</details>
|
| 168 |
+
-->
|
| 169 |
+
|
| 170 |
+
<!--
|
| 171 |
+
### Out-of-Scope Use
|
| 172 |
+
|
| 173 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 174 |
+
-->
|
| 175 |
+
|
| 176 |
+
## Evaluation
|
| 177 |
+
|
| 178 |
+
### Metrics
|
| 179 |
+
|
| 180 |
+
#### Semantic Similarity
|
| 181 |
+
|
| 182 |
+
* Datasets: `sts-dev` and `sts-test`
|
| 183 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 184 |
+
|
| 185 |
+
| Metric | sts-dev | sts-test |
|
| 186 |
+
|:--------------------|:-----------|:-----------|
|
| 187 |
+
| pearson_cosine | 0.8599 | 0.8885 |
|
| 188 |
+
| **spearman_cosine** | **0.8569** | **0.8818** |
|
| 189 |
+
|
| 190 |
+
<!--
|
| 191 |
+
## Bias, Risks and Limitations
|
| 192 |
+
|
| 193 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 194 |
+
-->
|
| 195 |
+
|
| 196 |
+
<!--
|
| 197 |
+
### Recommendations
|
| 198 |
+
|
| 199 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 200 |
+
-->
|
| 201 |
+
|
| 202 |
+
## Training Details
|
| 203 |
+
|
| 204 |
+
### Training Dataset
|
| 205 |
+
|
| 206 |
+
#### bps-sts-dataset-v1
|
| 207 |
+
|
| 208 |
+
* Dataset: [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) at [5c8f96e](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1/tree/5c8f96e30c138042010e024d0a04ec82f5b36758)
|
| 209 |
+
* Size: 2,436 training samples
|
| 210 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 211 |
+
* Approximate statistics based on the first 1000 samples:
|
| 212 |
+
| | sentence1 | sentence2 | score |
|
| 213 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 214 |
+
| type | string | string | float |
|
| 215 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 20.49 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.71 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
|
| 216 |
+
* Samples:
|
| 217 |
+
| sentence1 | sentence2 | score |
|
| 218 |
+
|:-----------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:-----------------|
|
| 219 |
+
| <code>bagaimana capaian Tujuan Pembangunan Berkelanjutan di Indonesia?</code> | <code>Laporan Pencapaian Indikator Tujuan Pembangunan Berkelanjutan (TPB/SDGs) Indonesia, Edisi 2024</code> | <code>0.8</code> |
|
| 220 |
+
| <code>Jumlah perpustakaan umum di Indonesia tahun 2022 sebanyak 170.000 unit.</code> | <code>Minat baca masyarakat Indonesia masih perlu ditingkatkan melalui berbagai program literasi.</code> | <code>0.4</code> |
|
| 221 |
+
| <code>Jumlah sekolah negeri jenjang SMP di Kota Bandar Lampung adalah 30 sekolah.</code> | <code>Laju deforestasi di Provinsi Kalimantan Tengah masih mengkhawatirkan.</code> | <code>0.0</code> |
|
| 222 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 223 |
+
```json
|
| 224 |
+
{
|
| 225 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 226 |
+
}
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
+
### Evaluation Dataset
|
| 230 |
+
|
| 231 |
+
#### bps-sts-dataset-v1
|
| 232 |
+
|
| 233 |
+
* Dataset: [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) at [5c8f96e](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1/tree/5c8f96e30c138042010e024d0a04ec82f5b36758)
|
| 234 |
+
* Size: 522 evaluation samples
|
| 235 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 236 |
+
* Approximate statistics based on the first 522 samples:
|
| 237 |
+
| | sentence1 | sentence2 | score |
|
| 238 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
| 239 |
+
| type | string | string | float |
|
| 240 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 20.83 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.84 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
| 241 |
+
* Samples:
|
| 242 |
+
| sentence1 | sentence2 | score |
|
| 243 |
+
|:---------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
| 244 |
+
| <code>Persentase desa yang memiliki fasilitas internet di Provinsi Y pada tahun 2021 adalah 85%.</code> | <code>Luas perkebunan kelapa sawit di Provinsi Y pada tahun 2021 adalah 500.000 hektar.</code> | <code>0.2</code> |
|
| 245 |
+
| <code>Kontribusi sektor UMKM terhadap PDRB Kota Malang pada tahun 2023 sebesar 60%.</code> | <code>Usaha Mikro, Kecil, dan Menengah menyumbang 60 persen terhadap total Produk Domestik Regional Bruto di kota pendidikan Malang pada tahun 2023.</code> | <code>1.0</code> |
|
| 246 |
+
| <code>Jumlah Industri Kecil dan Menengah (IKM) di Kabupaten Tegal, Jawa Tengah, bertambah 200 unit pada tahun 2024.</code> | <code>Di Tegal, sebuah kabupaten di Jateng, terjadi penambahan 200 unit IKM sepanjang tahun 2024.</code> | <code>1.0</code> |
|
| 247 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 248 |
+
```json
|
| 249 |
+
{
|
| 250 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 251 |
+
}
|
| 252 |
+
```
|
| 253 |
+
|
| 254 |
+
### Training Hyperparameters
|
| 255 |
+
#### Non-Default Hyperparameters
|
| 256 |
+
|
| 257 |
+
- `eval_strategy`: steps
|
| 258 |
+
- `per_device_train_batch_size`: 16
|
| 259 |
+
- `per_device_eval_batch_size`: 16
|
| 260 |
+
- `learning_rate`: 1e-05
|
| 261 |
+
- `num_train_epochs`: 6
|
| 262 |
+
- `warmup_ratio`: 0.1
|
| 263 |
+
- `fp16`: True
|
| 264 |
+
- `load_best_model_at_end`: True
|
| 265 |
+
- `label_smoothing_factor`: 0.01
|
| 266 |
+
- `eval_on_start`: True
|
| 267 |
+
|
| 268 |
+
#### All Hyperparameters
|
| 269 |
+
<details><summary>Click to expand</summary>
|
| 270 |
+
|
| 271 |
+
- `overwrite_output_dir`: False
|
| 272 |
+
- `do_predict`: False
|
| 273 |
+
- `eval_strategy`: steps
|
| 274 |
+
- `prediction_loss_only`: True
|
| 275 |
+
- `per_device_train_batch_size`: 16
|
| 276 |
+
- `per_device_eval_batch_size`: 16
|
| 277 |
+
- `per_gpu_train_batch_size`: None
|
| 278 |
+
- `per_gpu_eval_batch_size`: None
|
| 279 |
+
- `gradient_accumulation_steps`: 1
|
| 280 |
+
- `eval_accumulation_steps`: None
|
| 281 |
+
- `torch_empty_cache_steps`: None
|
| 282 |
+
- `learning_rate`: 1e-05
|
| 283 |
+
- `weight_decay`: 0.0
|
| 284 |
+
- `adam_beta1`: 0.9
|
| 285 |
+
- `adam_beta2`: 0.999
|
| 286 |
+
- `adam_epsilon`: 1e-08
|
| 287 |
+
- `max_grad_norm`: 1.0
|
| 288 |
+
- `num_train_epochs`: 6
|
| 289 |
+
- `max_steps`: -1
|
| 290 |
+
- `lr_scheduler_type`: linear
|
| 291 |
+
- `lr_scheduler_kwargs`: {}
|
| 292 |
+
- `warmup_ratio`: 0.1
|
| 293 |
+
- `warmup_steps`: 0
|
| 294 |
+
- `log_level`: passive
|
| 295 |
+
- `log_level_replica`: warning
|
| 296 |
+
- `log_on_each_node`: True
|
| 297 |
+
- `logging_nan_inf_filter`: True
|
| 298 |
+
- `save_safetensors`: True
|
| 299 |
+
- `save_on_each_node`: False
|
| 300 |
+
- `save_only_model`: False
|
| 301 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 302 |
+
- `no_cuda`: False
|
| 303 |
+
- `use_cpu`: False
|
| 304 |
+
- `use_mps_device`: False
|
| 305 |
+
- `seed`: 42
|
| 306 |
+
- `data_seed`: None
|
| 307 |
+
- `jit_mode_eval`: False
|
| 308 |
+
- `use_ipex`: False
|
| 309 |
+
- `bf16`: False
|
| 310 |
+
- `fp16`: True
|
| 311 |
+
- `fp16_opt_level`: O1
|
| 312 |
+
- `half_precision_backend`: auto
|
| 313 |
+
- `bf16_full_eval`: False
|
| 314 |
+
- `fp16_full_eval`: False
|
| 315 |
+
- `tf32`: None
|
| 316 |
+
- `local_rank`: 0
|
| 317 |
+
- `ddp_backend`: None
|
| 318 |
+
- `tpu_num_cores`: None
|
| 319 |
+
- `tpu_metrics_debug`: False
|
| 320 |
+
- `debug`: []
|
| 321 |
+
- `dataloader_drop_last`: False
|
| 322 |
+
- `dataloader_num_workers`: 0
|
| 323 |
+
- `dataloader_prefetch_factor`: None
|
| 324 |
+
- `past_index`: -1
|
| 325 |
+
- `disable_tqdm`: False
|
| 326 |
+
- `remove_unused_columns`: True
|
| 327 |
+
- `label_names`: None
|
| 328 |
+
- `load_best_model_at_end`: True
|
| 329 |
+
- `ignore_data_skip`: False
|
| 330 |
+
- `fsdp`: []
|
| 331 |
+
- `fsdp_min_num_params`: 0
|
| 332 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 333 |
+
- `tp_size`: 0
|
| 334 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 335 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 336 |
+
- `deepspeed`: None
|
| 337 |
+
- `label_smoothing_factor`: 0.01
|
| 338 |
+
- `optim`: adamw_torch
|
| 339 |
+
- `optim_args`: None
|
| 340 |
+
- `adafactor`: False
|
| 341 |
+
- `group_by_length`: False
|
| 342 |
+
- `length_column_name`: length
|
| 343 |
+
- `ddp_find_unused_parameters`: None
|
| 344 |
+
- `ddp_bucket_cap_mb`: None
|
| 345 |
+
- `ddp_broadcast_buffers`: False
|
| 346 |
+
- `dataloader_pin_memory`: True
|
| 347 |
+
- `dataloader_persistent_workers`: False
|
| 348 |
+
- `skip_memory_metrics`: True
|
| 349 |
+
- `use_legacy_prediction_loop`: False
|
| 350 |
+
- `push_to_hub`: False
|
| 351 |
+
- `resume_from_checkpoint`: None
|
| 352 |
+
- `hub_model_id`: None
|
| 353 |
+
- `hub_strategy`: every_save
|
| 354 |
+
- `hub_private_repo`: None
|
| 355 |
+
- `hub_always_push`: False
|
| 356 |
+
- `gradient_checkpointing`: False
|
| 357 |
+
- `gradient_checkpointing_kwargs`: None
|
| 358 |
+
- `include_inputs_for_metrics`: False
|
| 359 |
+
- `include_for_metrics`: []
|
| 360 |
+
- `eval_do_concat_batches`: True
|
| 361 |
+
- `fp16_backend`: auto
|
| 362 |
+
- `push_to_hub_model_id`: None
|
| 363 |
+
- `push_to_hub_organization`: None
|
| 364 |
+
- `mp_parameters`:
|
| 365 |
+
- `auto_find_batch_size`: False
|
| 366 |
+
- `full_determinism`: False
|
| 367 |
+
- `torchdynamo`: None
|
| 368 |
+
- `ray_scope`: last
|
| 369 |
+
- `ddp_timeout`: 1800
|
| 370 |
+
- `torch_compile`: False
|
| 371 |
+
- `torch_compile_backend`: None
|
| 372 |
+
- `torch_compile_mode`: None
|
| 373 |
+
- `include_tokens_per_second`: False
|
| 374 |
+
- `include_num_input_tokens_seen`: False
|
| 375 |
+
- `neftune_noise_alpha`: None
|
| 376 |
+
- `optim_target_modules`: None
|
| 377 |
+
- `batch_eval_metrics`: False
|
| 378 |
+
- `eval_on_start`: True
|
| 379 |
+
- `use_liger_kernel`: False
|
| 380 |
+
- `eval_use_gather_object`: False
|
| 381 |
+
- `average_tokens_across_devices`: False
|
| 382 |
+
- `prompts`: None
|
| 383 |
+
- `batch_sampler`: batch_sampler
|
| 384 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 385 |
+
|
| 386 |
+
</details>
|
| 387 |
+
|
| 388 |
+
### Training Logs
|
| 389 |
+
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
| 390 |
+
|:----------:|:-------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
|
| 391 |
+
| 0 | 0 | - | 0.0588 | 0.7404 | - |
|
| 392 |
+
| 0.0654 | 10 | 0.0541 | 0.0586 | 0.7412 | - |
|
| 393 |
+
| 0.1307 | 20 | 0.0546 | 0.0579 | 0.7444 | - |
|
| 394 |
+
| 0.1961 | 30 | 0.0441 | 0.0565 | 0.7500 | - |
|
| 395 |
+
| 0.2614 | 40 | 0.0503 | 0.0546 | 0.7580 | - |
|
| 396 |
+
| 0.3268 | 50 | 0.0546 | 0.0528 | 0.7648 | - |
|
| 397 |
+
| 0.3922 | 60 | 0.0538 | 0.0509 | 0.7739 | - |
|
| 398 |
+
| 0.4575 | 70 | 0.0455 | 0.0490 | 0.7834 | - |
|
| 399 |
+
| 0.5229 | 80 | 0.0471 | 0.0472 | 0.7925 | - |
|
| 400 |
+
| 0.5882 | 90 | 0.0417 | 0.0455 | 0.8017 | - |
|
| 401 |
+
| 0.6536 | 100 | 0.0427 | 0.0441 | 0.8095 | - |
|
| 402 |
+
| 0.7190 | 110 | 0.0445 | 0.0432 | 0.8138 | - |
|
| 403 |
+
| 0.7843 | 120 | 0.0382 | 0.0425 | 0.8168 | - |
|
| 404 |
+
| 0.8497 | 130 | 0.0443 | 0.0413 | 0.8220 | - |
|
| 405 |
+
| 0.9150 | 140 | 0.0449 | 0.0405 | 0.8264 | - |
|
| 406 |
+
| 0.9804 | 150 | 0.0407 | 0.0401 | 0.8287 | - |
|
| 407 |
+
| 1.0458 | 160 | 0.0377 | 0.0400 | 0.8312 | - |
|
| 408 |
+
| 1.1111 | 170 | 0.0285 | 0.0392 | 0.8327 | - |
|
| 409 |
+
| 1.1765 | 180 | 0.033 | 0.0389 | 0.8329 | - |
|
| 410 |
+
| 1.2418 | 190 | 0.0299 | 0.0388 | 0.8331 | - |
|
| 411 |
+
| 1.3072 | 200 | 0.029 | 0.0387 | 0.8333 | - |
|
| 412 |
+
| 1.3725 | 210 | 0.031 | 0.0384 | 0.8340 | - |
|
| 413 |
+
| 1.4379 | 220 | 0.0274 | 0.0384 | 0.8351 | - |
|
| 414 |
+
| 1.5033 | 230 | 0.0312 | 0.0382 | 0.8367 | - |
|
| 415 |
+
| 1.5686 | 240 | 0.0301 | 0.0378 | 0.8383 | - |
|
| 416 |
+
| 1.6340 | 250 | 0.0304 | 0.0375 | 0.8390 | - |
|
| 417 |
+
| 1.6993 | 260 | 0.0226 | 0.0374 | 0.8389 | - |
|
| 418 |
+
| 1.7647 | 270 | 0.0264 | 0.0373 | 0.8399 | - |
|
| 419 |
+
| 1.8301 | 280 | 0.0295 | 0.0370 | 0.8418 | - |
|
| 420 |
+
| 1.8954 | 290 | 0.0298 | 0.0368 | 0.8419 | - |
|
| 421 |
+
| 1.9608 | 300 | 0.0291 | 0.0366 | 0.8422 | - |
|
| 422 |
+
| 2.0261 | 310 | 0.0279 | 0.0365 | 0.8426 | - |
|
| 423 |
+
| 2.0915 | 320 | 0.0231 | 0.0363 | 0.8432 | - |
|
| 424 |
+
| 2.1569 | 330 | 0.0249 | 0.0361 | 0.8446 | - |
|
| 425 |
+
| 2.2222 | 340 | 0.0253 | 0.0359 | 0.8454 | - |
|
| 426 |
+
| 2.2876 | 350 | 0.024 | 0.0358 | 0.8463 | - |
|
| 427 |
+
| 2.3529 | 360 | 0.0239 | 0.0357 | 0.8471 | - |
|
| 428 |
+
| 2.4183 | 370 | 0.0222 | 0.0355 | 0.8473 | - |
|
| 429 |
+
| 2.4837 | 380 | 0.0284 | 0.0354 | 0.8476 | - |
|
| 430 |
+
| 2.5490 | 390 | 0.0176 | 0.0353 | 0.8486 | - |
|
| 431 |
+
| 2.6144 | 400 | 0.0184 | 0.0352 | 0.8489 | - |
|
| 432 |
+
| 2.6797 | 410 | 0.023 | 0.0351 | 0.8495 | - |
|
| 433 |
+
| 2.7451 | 420 | 0.0201 | 0.0351 | 0.8494 | - |
|
| 434 |
+
| 2.8105 | 430 | 0.0252 | 0.0351 | 0.8499 | - |
|
| 435 |
+
| 2.8758 | 440 | 0.0206 | 0.0350 | 0.8503 | - |
|
| 436 |
+
| 2.9412 | 450 | 0.0188 | 0.0350 | 0.8499 | - |
|
| 437 |
+
| 3.0065 | 460 | 0.017 | 0.0348 | 0.8501 | - |
|
| 438 |
+
| 3.0719 | 470 | 0.0174 | 0.0347 | 0.8505 | - |
|
| 439 |
+
| 3.1373 | 480 | 0.0171 | 0.0345 | 0.8515 | - |
|
| 440 |
+
| 3.2026 | 490 | 0.0226 | 0.0344 | 0.8520 | - |
|
| 441 |
+
| 3.2680 | 500 | 0.0233 | 0.0344 | 0.8520 | - |
|
| 442 |
+
| 3.3333 | 510 | 0.0177 | 0.0344 | 0.8523 | - |
|
| 443 |
+
| 3.3987 | 520 | 0.0155 | 0.0343 | 0.8522 | - |
|
| 444 |
+
| 3.4641 | 530 | 0.0155 | 0.0344 | 0.8522 | - |
|
| 445 |
+
| 3.5294 | 540 | 0.0249 | 0.0343 | 0.8523 | - |
|
| 446 |
+
| 3.5948 | 550 | 0.0177 | 0.0343 | 0.8522 | - |
|
| 447 |
+
| 3.6601 | 560 | 0.0149 | 0.0343 | 0.8520 | - |
|
| 448 |
+
| 3.7255 | 570 | 0.0178 | 0.0343 | 0.8517 | - |
|
| 449 |
+
| 3.7908 | 580 | 0.0181 | 0.0343 | 0.8520 | - |
|
| 450 |
+
| 3.8562 | 590 | 0.018 | 0.0342 | 0.8525 | - |
|
| 451 |
+
| 3.9216 | 600 | 0.0178 | 0.0341 | 0.8525 | - |
|
| 452 |
+
| 3.9869 | 610 | 0.0225 | 0.0340 | 0.8530 | - |
|
| 453 |
+
| 4.0523 | 620 | 0.0194 | 0.0339 | 0.8541 | - |
|
| 454 |
+
| 4.1176 | 630 | 0.0145 | 0.0338 | 0.8548 | - |
|
| 455 |
+
| 4.1830 | 640 | 0.0151 | 0.0337 | 0.8554 | - |
|
| 456 |
+
| 4.2484 | 650 | 0.0187 | 0.0336 | 0.8560 | - |
|
| 457 |
+
| 4.3137 | 660 | 0.0142 | 0.0336 | 0.8561 | - |
|
| 458 |
+
| 4.3791 | 670 | 0.0162 | 0.0336 | 0.8557 | - |
|
| 459 |
+
| 4.4444 | 680 | 0.0167 | 0.0335 | 0.8558 | - |
|
| 460 |
+
| 4.5098 | 690 | 0.013 | 0.0335 | 0.8555 | - |
|
| 461 |
+
| 4.5752 | 700 | 0.0174 | 0.0336 | 0.8555 | - |
|
| 462 |
+
| 4.6405 | 710 | 0.0156 | 0.0336 | 0.8556 | - |
|
| 463 |
+
| 4.7059 | 720 | 0.0155 | 0.0336 | 0.8555 | - |
|
| 464 |
+
| 4.7712 | 730 | 0.0179 | 0.0336 | 0.8553 | - |
|
| 465 |
+
| 4.8366 | 740 | 0.0158 | 0.0335 | 0.8553 | - |
|
| 466 |
+
| 4.9020 | 750 | 0.0143 | 0.0335 | 0.8553 | - |
|
| 467 |
+
| 4.9673 | 760 | 0.019 | 0.0335 | 0.8557 | - |
|
| 468 |
+
| 5.0327 | 770 | 0.0143 | 0.0334 | 0.8559 | - |
|
| 469 |
+
| 5.0980 | 780 | 0.0136 | 0.0334 | 0.8559 | - |
|
| 470 |
+
| 5.1634 | 790 | 0.0138 | 0.0334 | 0.8560 | - |
|
| 471 |
+
| 5.2288 | 800 | 0.0134 | 0.0333 | 0.8561 | - |
|
| 472 |
+
| 5.2941 | 810 | 0.0173 | 0.0333 | 0.8563 | - |
|
| 473 |
+
| 5.3595 | 820 | 0.0128 | 0.0333 | 0.8562 | - |
|
| 474 |
+
| 5.4248 | 830 | 0.0145 | 0.0333 | 0.8564 | - |
|
| 475 |
+
| 5.4902 | 840 | 0.0153 | 0.0333 | 0.8566 | - |
|
| 476 |
+
| 5.5556 | 850 | 0.0166 | 0.0333 | 0.8566 | - |
|
| 477 |
+
| 5.6209 | 860 | 0.0179 | 0.0332 | 0.8569 | - |
|
| 478 |
+
| 5.6863 | 870 | 0.0151 | 0.0332 | 0.8569 | - |
|
| 479 |
+
| 5.7516 | 880 | 0.0168 | 0.0332 | 0.8570 | - |
|
| 480 |
+
| 5.8170 | 890 | 0.0129 | 0.0332 | 0.8570 | - |
|
| 481 |
+
| 5.8824 | 900 | 0.015 | 0.0332 | 0.8569 | - |
|
| 482 |
+
| **5.9477** | **910** | **0.0148** | **0.0332** | **0.8569** | **-** |
|
| 483 |
+
| -1 | -1 | - | - | - | 0.8818 |
|
| 484 |
+
|
| 485 |
+
* The bold row denotes the saved checkpoint.
|
| 486 |
+
|
| 487 |
+
### Framework Versions
|
| 488 |
+
- Python: 3.11.12
|
| 489 |
+
- Sentence Transformers: 3.4.0
|
| 490 |
+
- Transformers: 4.51.3
|
| 491 |
+
- PyTorch: 2.6.0+cu124
|
| 492 |
+
- Accelerate: 1.6.0
|
| 493 |
+
- Datasets: 3.2.0
|
| 494 |
+
- Tokenizers: 0.21.1
|
| 495 |
+
|
| 496 |
+
## Citation
|
| 497 |
+
|
| 498 |
+
### BibTeX
|
| 499 |
+
|
| 500 |
+
#### Sentence Transformers
|
| 501 |
+
```bibtex
|
| 502 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 503 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 504 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 505 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 506 |
+
month = "11",
|
| 507 |
+
year = "2019",
|
| 508 |
+
publisher = "Association for Computational Linguistics",
|
| 509 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 510 |
+
}
|
| 511 |
+
```
|
| 512 |
+
|
| 513 |
+
<!--
|
| 514 |
+
## Glossary
|
| 515 |
+
|
| 516 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 517 |
+
-->
|
| 518 |
+
|
| 519 |
+
<!--
|
| 520 |
+
## Model Card Authors
|
| 521 |
+
|
| 522 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 523 |
+
-->
|
| 524 |
+
|
| 525 |
+
<!--
|
| 526 |
+
## Model Card Contact
|
| 527 |
+
|
| 528 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 529 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 1536,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.51.3",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 250037
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34cdffa42f793993b94f4d58b8d3346f650525997d2a01db8cf4e2f5e806aa19
|
| 3 |
+
size 470637416
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"extra_special_tokens": {},
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"max_length": 128,
|
| 52 |
+
"model_max_length": 128,
|
| 53 |
+
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "<pad>",
|
| 55 |
+
"pad_token_type_id": 0,
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sep_token": "</s>",
|
| 58 |
+
"stride": 0,
|
| 59 |
+
"strip_accents": null,
|
| 60 |
+
"tokenize_chinese_chars": true,
|
| 61 |
+
"tokenizer_class": "BertTokenizer",
|
| 62 |
+
"truncation_side": "right",
|
| 63 |
+
"truncation_strategy": "longest_first",
|
| 64 |
+
"unk_token": "<unk>"
|
| 65 |
+
}
|
unigram.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
|
| 3 |
+
size 14763260
|