yahyaabd commited on
Commit
11312cc
·
verified ·
1 Parent(s): a41b86a

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,529 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2436
8
+ - loss:CosineSimilarityLoss
9
+ base_model: yahyaabd/allstats-search-mini-v1-1-mnrl
10
+ widget:
11
+ - source_sentence: Persentase penduduk usia 15-24 tahun di Kota Bandar Lampung yang
12
+ tidak sekolah dan tidak bekerja (NEET) adalah 10%.
13
+ sentences:
14
+ - Lembaga layanan menerima sekitar sepuluh ribu pengaduan kekerasan terhadap perempuan
15
+ pada 2023.
16
+ - Volume sampah plastik yang dihasilkan Kota Bandar Lampung setiap hari mencapai
17
+ 100 ton.
18
+ - Komponen volatile foods mengalami deflasi 0,5 persen secara bulanan pada Mei 2025.
19
+ - source_sentence: Jumlah pengaduan kasus pencemaran lingkungan yang diterima KLHK
20
+ pada tahun 2023 sebanyak 1.500 kasus.
21
+ sentences:
22
+ - Kualitas air laut di Teluk Jakarta tercemar berat akibat limbah industri dan domestik
23
+ dari daratan.
24
+ - 'Statistik Pengaduan Lingkungan Hidup: Jumlah Kasus Pencemaran Air, Udara, dan
25
+ Limbah B3 Menurut Provinsi dan Status Tindak Lanjut, Tahun 2023'
26
+ - Sosialisasi peta rawan bencana kepada masyarakat di daerah rentan perlu ditingkatkan
27
+ untuk meningkatkan kesiapsiagaan.
28
+ - source_sentence: Pulau Lombok di Provinsi Nusa Tenggara Barat (NTB) memiliki Gunung
29
+ Rinjani.
30
+ sentences:
31
+ - Sektor yang paling diminati investor PMDN tahun 2023 adalah industri pengolahan.
32
+ - Persentase Penduduk Usia 25 Tahun Ke Atas Menurut Tingkat Pendidikan Tertinggi
33
+ yang Ditamatkan (Termasuk S1), Indonesia, 2024
34
+ - Ayam Taliwang adalah kuliner pedas khas NTB.
35
+ - source_sentence: Luas terumbu karang yang mengalami pemutihan (bleaching) di perairan
36
+ Raja Ampat pada awal tahun 2024 mencapai 5% dari total area.
37
+ sentences:
38
+ - Jumlah Pompa Air dan Kapasitasnya untuk Penanganan Banjir Jakarta
39
+ - Kenaikan harga tiket pesawat rute Palembang-Jakarta terjadi menjelang libur Idul
40
+ Adha.
41
+ - Sekitar 5 persen dari total area terumbu karang di Raja Ampat terdampak fenomena
42
+ pemutihan pada awal 2024.
43
+ - source_sentence: PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak
44
+ bumi dunia.
45
+ sentences:
46
+ - Persentase Penduduk Lanjut Usia (60 Tahun Ke Atas) Menurut Provinsi (dalam Statistik
47
+ Penduduk Lanjut Usia Indonesia 2023)
48
+ - Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.
49
+ - The Riau Islands province is known for its beautiful beaches and marine tourism.
50
+ datasets:
51
+ - yahyaabd/BPS-STS-dataset-v1
52
+ pipeline_tag: sentence-similarity
53
+ library_name: sentence-transformers
54
+ metrics:
55
+ - pearson_cosine
56
+ - spearman_cosine
57
+ model-index:
58
+ - name: SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
59
+ results:
60
+ - task:
61
+ type: semantic-similarity
62
+ name: Semantic Similarity
63
+ dataset:
64
+ name: sts dev
65
+ type: sts-dev
66
+ metrics:
67
+ - type: pearson_cosine
68
+ value: 0.8598548892892474
69
+ name: Pearson Cosine
70
+ - type: spearman_cosine
71
+ value: 0.8569191140389504
72
+ name: Spearman Cosine
73
+ - task:
74
+ type: semantic-similarity
75
+ name: Semantic Similarity
76
+ dataset:
77
+ name: sts test
78
+ type: sts-test
79
+ metrics:
80
+ - type: pearson_cosine
81
+ value: 0.8884601567043606
82
+ name: Pearson Cosine
83
+ - type: spearman_cosine
84
+ value: 0.8818393243914469
85
+ name: Spearman Cosine
86
+ ---
87
+
88
+ # SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
89
+
90
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl) on the [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
91
+
92
+ ## Model Details
93
+
94
+ ### Model Description
95
+ - **Model Type:** Sentence Transformer
96
+ - **Base model:** [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl) <!-- at revision 117ddf58a25bdde8ba44b3c0e1bff6582bc34d17 -->
97
+ - **Maximum Sequence Length:** 128 tokens
98
+ - **Output Dimensionality:** 384 dimensions
99
+ - **Similarity Function:** Cosine Similarity
100
+ - **Training Dataset:**
101
+ - [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1)
102
+ <!-- - **Language:** Unknown -->
103
+ <!-- - **License:** Unknown -->
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
109
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
110
+
111
+ ### Full Model Architecture
112
+
113
+ ```
114
+ SentenceTransformer(
115
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
116
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
117
+ )
118
+ ```
119
+
120
+ ## Usage
121
+
122
+ ### Direct Usage (Sentence Transformers)
123
+
124
+ First install the Sentence Transformers library:
125
+
126
+ ```bash
127
+ pip install -U sentence-transformers
128
+ ```
129
+
130
+ Then you can load this model and run inference.
131
+ ```python
132
+ from sentence_transformers import SentenceTransformer
133
+
134
+ # Download from the 🤗 Hub
135
+ model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-1")
136
+ # Run inference
137
+ sentences = [
138
+ 'PDRB per kapita Provinsi Riau sangat dipengaruhi oleh harga minyak bumi dunia.',
139
+ 'The Riau Islands province is known for its beautiful beaches and marine tourism.',
140
+ 'Di wilayah perkotaan, angka kemiskinan pada Maret 2023 adalah 7,29%.',
141
+ ]
142
+ embeddings = model.encode(sentences)
143
+ print(embeddings.shape)
144
+ # [3, 384]
145
+
146
+ # Get the similarity scores for the embeddings
147
+ similarities = model.similarity(embeddings, embeddings)
148
+ print(similarities.shape)
149
+ # [3, 3]
150
+ ```
151
+
152
+ <!--
153
+ ### Direct Usage (Transformers)
154
+
155
+ <details><summary>Click to see the direct usage in Transformers</summary>
156
+
157
+ </details>
158
+ -->
159
+
160
+ <!--
161
+ ### Downstream Usage (Sentence Transformers)
162
+
163
+ You can finetune this model on your own dataset.
164
+
165
+ <details><summary>Click to expand</summary>
166
+
167
+ </details>
168
+ -->
169
+
170
+ <!--
171
+ ### Out-of-Scope Use
172
+
173
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
174
+ -->
175
+
176
+ ## Evaluation
177
+
178
+ ### Metrics
179
+
180
+ #### Semantic Similarity
181
+
182
+ * Datasets: `sts-dev` and `sts-test`
183
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
184
+
185
+ | Metric | sts-dev | sts-test |
186
+ |:--------------------|:-----------|:-----------|
187
+ | pearson_cosine | 0.8599 | 0.8885 |
188
+ | **spearman_cosine** | **0.8569** | **0.8818** |
189
+
190
+ <!--
191
+ ## Bias, Risks and Limitations
192
+
193
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
194
+ -->
195
+
196
+ <!--
197
+ ### Recommendations
198
+
199
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
200
+ -->
201
+
202
+ ## Training Details
203
+
204
+ ### Training Dataset
205
+
206
+ #### bps-sts-dataset-v1
207
+
208
+ * Dataset: [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) at [5c8f96e](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1/tree/5c8f96e30c138042010e024d0a04ec82f5b36758)
209
+ * Size: 2,436 training samples
210
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
211
+ * Approximate statistics based on the first 1000 samples:
212
+ | | sentence1 | sentence2 | score |
213
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
214
+ | type | string | string | float |
215
+ | details | <ul><li>min: 6 tokens</li><li>mean: 20.49 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.71 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
216
+ * Samples:
217
+ | sentence1 | sentence2 | score |
218
+ |:-----------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:-----------------|
219
+ | <code>bagaimana capaian Tujuan Pembangunan Berkelanjutan di Indonesia?</code> | <code>Laporan Pencapaian Indikator Tujuan Pembangunan Berkelanjutan (TPB/SDGs) Indonesia, Edisi 2024</code> | <code>0.8</code> |
220
+ | <code>Jumlah perpustakaan umum di Indonesia tahun 2022 sebanyak 170.000 unit.</code> | <code>Minat baca masyarakat Indonesia masih perlu ditingkatkan melalui berbagai program literasi.</code> | <code>0.4</code> |
221
+ | <code>Jumlah sekolah negeri jenjang SMP di Kota Bandar Lampung adalah 30 sekolah.</code> | <code>Laju deforestasi di Provinsi Kalimantan Tengah masih mengkhawatirkan.</code> | <code>0.0</code> |
222
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
223
+ ```json
224
+ {
225
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
226
+ }
227
+ ```
228
+
229
+ ### Evaluation Dataset
230
+
231
+ #### bps-sts-dataset-v1
232
+
233
+ * Dataset: [bps-sts-dataset-v1](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1) at [5c8f96e](https://huggingface.co/datasets/yahyaabd/BPS-STS-dataset-v1/tree/5c8f96e30c138042010e024d0a04ec82f5b36758)
234
+ * Size: 522 evaluation samples
235
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
236
+ * Approximate statistics based on the first 522 samples:
237
+ | | sentence1 | sentence2 | score |
238
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
239
+ | type | string | string | float |
240
+ | details | <ul><li>min: 9 tokens</li><li>mean: 20.83 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.84 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
241
+ * Samples:
242
+ | sentence1 | sentence2 | score |
243
+ |:---------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
244
+ | <code>Persentase desa yang memiliki fasilitas internet di Provinsi Y pada tahun 2021 adalah 85%.</code> | <code>Luas perkebunan kelapa sawit di Provinsi Y pada tahun 2021 adalah 500.000 hektar.</code> | <code>0.2</code> |
245
+ | <code>Kontribusi sektor UMKM terhadap PDRB Kota Malang pada tahun 2023 sebesar 60%.</code> | <code>Usaha Mikro, Kecil, dan Menengah menyumbang 60 persen terhadap total Produk Domestik Regional Bruto di kota pendidikan Malang pada tahun 2023.</code> | <code>1.0</code> |
246
+ | <code>Jumlah Industri Kecil dan Menengah (IKM) di Kabupaten Tegal, Jawa Tengah, bertambah 200 unit pada tahun 2024.</code> | <code>Di Tegal, sebuah kabupaten di Jateng, terjadi penambahan 200 unit IKM sepanjang tahun 2024.</code> | <code>1.0</code> |
247
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
248
+ ```json
249
+ {
250
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
251
+ }
252
+ ```
253
+
254
+ ### Training Hyperparameters
255
+ #### Non-Default Hyperparameters
256
+
257
+ - `eval_strategy`: steps
258
+ - `per_device_train_batch_size`: 16
259
+ - `per_device_eval_batch_size`: 16
260
+ - `learning_rate`: 1e-05
261
+ - `num_train_epochs`: 6
262
+ - `warmup_ratio`: 0.1
263
+ - `fp16`: True
264
+ - `load_best_model_at_end`: True
265
+ - `label_smoothing_factor`: 0.01
266
+ - `eval_on_start`: True
267
+
268
+ #### All Hyperparameters
269
+ <details><summary>Click to expand</summary>
270
+
271
+ - `overwrite_output_dir`: False
272
+ - `do_predict`: False
273
+ - `eval_strategy`: steps
274
+ - `prediction_loss_only`: True
275
+ - `per_device_train_batch_size`: 16
276
+ - `per_device_eval_batch_size`: 16
277
+ - `per_gpu_train_batch_size`: None
278
+ - `per_gpu_eval_batch_size`: None
279
+ - `gradient_accumulation_steps`: 1
280
+ - `eval_accumulation_steps`: None
281
+ - `torch_empty_cache_steps`: None
282
+ - `learning_rate`: 1e-05
283
+ - `weight_decay`: 0.0
284
+ - `adam_beta1`: 0.9
285
+ - `adam_beta2`: 0.999
286
+ - `adam_epsilon`: 1e-08
287
+ - `max_grad_norm`: 1.0
288
+ - `num_train_epochs`: 6
289
+ - `max_steps`: -1
290
+ - `lr_scheduler_type`: linear
291
+ - `lr_scheduler_kwargs`: {}
292
+ - `warmup_ratio`: 0.1
293
+ - `warmup_steps`: 0
294
+ - `log_level`: passive
295
+ - `log_level_replica`: warning
296
+ - `log_on_each_node`: True
297
+ - `logging_nan_inf_filter`: True
298
+ - `save_safetensors`: True
299
+ - `save_on_each_node`: False
300
+ - `save_only_model`: False
301
+ - `restore_callback_states_from_checkpoint`: False
302
+ - `no_cuda`: False
303
+ - `use_cpu`: False
304
+ - `use_mps_device`: False
305
+ - `seed`: 42
306
+ - `data_seed`: None
307
+ - `jit_mode_eval`: False
308
+ - `use_ipex`: False
309
+ - `bf16`: False
310
+ - `fp16`: True
311
+ - `fp16_opt_level`: O1
312
+ - `half_precision_backend`: auto
313
+ - `bf16_full_eval`: False
314
+ - `fp16_full_eval`: False
315
+ - `tf32`: None
316
+ - `local_rank`: 0
317
+ - `ddp_backend`: None
318
+ - `tpu_num_cores`: None
319
+ - `tpu_metrics_debug`: False
320
+ - `debug`: []
321
+ - `dataloader_drop_last`: False
322
+ - `dataloader_num_workers`: 0
323
+ - `dataloader_prefetch_factor`: None
324
+ - `past_index`: -1
325
+ - `disable_tqdm`: False
326
+ - `remove_unused_columns`: True
327
+ - `label_names`: None
328
+ - `load_best_model_at_end`: True
329
+ - `ignore_data_skip`: False
330
+ - `fsdp`: []
331
+ - `fsdp_min_num_params`: 0
332
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
333
+ - `tp_size`: 0
334
+ - `fsdp_transformer_layer_cls_to_wrap`: None
335
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
336
+ - `deepspeed`: None
337
+ - `label_smoothing_factor`: 0.01
338
+ - `optim`: adamw_torch
339
+ - `optim_args`: None
340
+ - `adafactor`: False
341
+ - `group_by_length`: False
342
+ - `length_column_name`: length
343
+ - `ddp_find_unused_parameters`: None
344
+ - `ddp_bucket_cap_mb`: None
345
+ - `ddp_broadcast_buffers`: False
346
+ - `dataloader_pin_memory`: True
347
+ - `dataloader_persistent_workers`: False
348
+ - `skip_memory_metrics`: True
349
+ - `use_legacy_prediction_loop`: False
350
+ - `push_to_hub`: False
351
+ - `resume_from_checkpoint`: None
352
+ - `hub_model_id`: None
353
+ - `hub_strategy`: every_save
354
+ - `hub_private_repo`: None
355
+ - `hub_always_push`: False
356
+ - `gradient_checkpointing`: False
357
+ - `gradient_checkpointing_kwargs`: None
358
+ - `include_inputs_for_metrics`: False
359
+ - `include_for_metrics`: []
360
+ - `eval_do_concat_batches`: True
361
+ - `fp16_backend`: auto
362
+ - `push_to_hub_model_id`: None
363
+ - `push_to_hub_organization`: None
364
+ - `mp_parameters`:
365
+ - `auto_find_batch_size`: False
366
+ - `full_determinism`: False
367
+ - `torchdynamo`: None
368
+ - `ray_scope`: last
369
+ - `ddp_timeout`: 1800
370
+ - `torch_compile`: False
371
+ - `torch_compile_backend`: None
372
+ - `torch_compile_mode`: None
373
+ - `include_tokens_per_second`: False
374
+ - `include_num_input_tokens_seen`: False
375
+ - `neftune_noise_alpha`: None
376
+ - `optim_target_modules`: None
377
+ - `batch_eval_metrics`: False
378
+ - `eval_on_start`: True
379
+ - `use_liger_kernel`: False
380
+ - `eval_use_gather_object`: False
381
+ - `average_tokens_across_devices`: False
382
+ - `prompts`: None
383
+ - `batch_sampler`: batch_sampler
384
+ - `multi_dataset_batch_sampler`: proportional
385
+
386
+ </details>
387
+
388
+ ### Training Logs
389
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
390
+ |:----------:|:-------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
391
+ | 0 | 0 | - | 0.0588 | 0.7404 | - |
392
+ | 0.0654 | 10 | 0.0541 | 0.0586 | 0.7412 | - |
393
+ | 0.1307 | 20 | 0.0546 | 0.0579 | 0.7444 | - |
394
+ | 0.1961 | 30 | 0.0441 | 0.0565 | 0.7500 | - |
395
+ | 0.2614 | 40 | 0.0503 | 0.0546 | 0.7580 | - |
396
+ | 0.3268 | 50 | 0.0546 | 0.0528 | 0.7648 | - |
397
+ | 0.3922 | 60 | 0.0538 | 0.0509 | 0.7739 | - |
398
+ | 0.4575 | 70 | 0.0455 | 0.0490 | 0.7834 | - |
399
+ | 0.5229 | 80 | 0.0471 | 0.0472 | 0.7925 | - |
400
+ | 0.5882 | 90 | 0.0417 | 0.0455 | 0.8017 | - |
401
+ | 0.6536 | 100 | 0.0427 | 0.0441 | 0.8095 | - |
402
+ | 0.7190 | 110 | 0.0445 | 0.0432 | 0.8138 | - |
403
+ | 0.7843 | 120 | 0.0382 | 0.0425 | 0.8168 | - |
404
+ | 0.8497 | 130 | 0.0443 | 0.0413 | 0.8220 | - |
405
+ | 0.9150 | 140 | 0.0449 | 0.0405 | 0.8264 | - |
406
+ | 0.9804 | 150 | 0.0407 | 0.0401 | 0.8287 | - |
407
+ | 1.0458 | 160 | 0.0377 | 0.0400 | 0.8312 | - |
408
+ | 1.1111 | 170 | 0.0285 | 0.0392 | 0.8327 | - |
409
+ | 1.1765 | 180 | 0.033 | 0.0389 | 0.8329 | - |
410
+ | 1.2418 | 190 | 0.0299 | 0.0388 | 0.8331 | - |
411
+ | 1.3072 | 200 | 0.029 | 0.0387 | 0.8333 | - |
412
+ | 1.3725 | 210 | 0.031 | 0.0384 | 0.8340 | - |
413
+ | 1.4379 | 220 | 0.0274 | 0.0384 | 0.8351 | - |
414
+ | 1.5033 | 230 | 0.0312 | 0.0382 | 0.8367 | - |
415
+ | 1.5686 | 240 | 0.0301 | 0.0378 | 0.8383 | - |
416
+ | 1.6340 | 250 | 0.0304 | 0.0375 | 0.8390 | - |
417
+ | 1.6993 | 260 | 0.0226 | 0.0374 | 0.8389 | - |
418
+ | 1.7647 | 270 | 0.0264 | 0.0373 | 0.8399 | - |
419
+ | 1.8301 | 280 | 0.0295 | 0.0370 | 0.8418 | - |
420
+ | 1.8954 | 290 | 0.0298 | 0.0368 | 0.8419 | - |
421
+ | 1.9608 | 300 | 0.0291 | 0.0366 | 0.8422 | - |
422
+ | 2.0261 | 310 | 0.0279 | 0.0365 | 0.8426 | - |
423
+ | 2.0915 | 320 | 0.0231 | 0.0363 | 0.8432 | - |
424
+ | 2.1569 | 330 | 0.0249 | 0.0361 | 0.8446 | - |
425
+ | 2.2222 | 340 | 0.0253 | 0.0359 | 0.8454 | - |
426
+ | 2.2876 | 350 | 0.024 | 0.0358 | 0.8463 | - |
427
+ | 2.3529 | 360 | 0.0239 | 0.0357 | 0.8471 | - |
428
+ | 2.4183 | 370 | 0.0222 | 0.0355 | 0.8473 | - |
429
+ | 2.4837 | 380 | 0.0284 | 0.0354 | 0.8476 | - |
430
+ | 2.5490 | 390 | 0.0176 | 0.0353 | 0.8486 | - |
431
+ | 2.6144 | 400 | 0.0184 | 0.0352 | 0.8489 | - |
432
+ | 2.6797 | 410 | 0.023 | 0.0351 | 0.8495 | - |
433
+ | 2.7451 | 420 | 0.0201 | 0.0351 | 0.8494 | - |
434
+ | 2.8105 | 430 | 0.0252 | 0.0351 | 0.8499 | - |
435
+ | 2.8758 | 440 | 0.0206 | 0.0350 | 0.8503 | - |
436
+ | 2.9412 | 450 | 0.0188 | 0.0350 | 0.8499 | - |
437
+ | 3.0065 | 460 | 0.017 | 0.0348 | 0.8501 | - |
438
+ | 3.0719 | 470 | 0.0174 | 0.0347 | 0.8505 | - |
439
+ | 3.1373 | 480 | 0.0171 | 0.0345 | 0.8515 | - |
440
+ | 3.2026 | 490 | 0.0226 | 0.0344 | 0.8520 | - |
441
+ | 3.2680 | 500 | 0.0233 | 0.0344 | 0.8520 | - |
442
+ | 3.3333 | 510 | 0.0177 | 0.0344 | 0.8523 | - |
443
+ | 3.3987 | 520 | 0.0155 | 0.0343 | 0.8522 | - |
444
+ | 3.4641 | 530 | 0.0155 | 0.0344 | 0.8522 | - |
445
+ | 3.5294 | 540 | 0.0249 | 0.0343 | 0.8523 | - |
446
+ | 3.5948 | 550 | 0.0177 | 0.0343 | 0.8522 | - |
447
+ | 3.6601 | 560 | 0.0149 | 0.0343 | 0.8520 | - |
448
+ | 3.7255 | 570 | 0.0178 | 0.0343 | 0.8517 | - |
449
+ | 3.7908 | 580 | 0.0181 | 0.0343 | 0.8520 | - |
450
+ | 3.8562 | 590 | 0.018 | 0.0342 | 0.8525 | - |
451
+ | 3.9216 | 600 | 0.0178 | 0.0341 | 0.8525 | - |
452
+ | 3.9869 | 610 | 0.0225 | 0.0340 | 0.8530 | - |
453
+ | 4.0523 | 620 | 0.0194 | 0.0339 | 0.8541 | - |
454
+ | 4.1176 | 630 | 0.0145 | 0.0338 | 0.8548 | - |
455
+ | 4.1830 | 640 | 0.0151 | 0.0337 | 0.8554 | - |
456
+ | 4.2484 | 650 | 0.0187 | 0.0336 | 0.8560 | - |
457
+ | 4.3137 | 660 | 0.0142 | 0.0336 | 0.8561 | - |
458
+ | 4.3791 | 670 | 0.0162 | 0.0336 | 0.8557 | - |
459
+ | 4.4444 | 680 | 0.0167 | 0.0335 | 0.8558 | - |
460
+ | 4.5098 | 690 | 0.013 | 0.0335 | 0.8555 | - |
461
+ | 4.5752 | 700 | 0.0174 | 0.0336 | 0.8555 | - |
462
+ | 4.6405 | 710 | 0.0156 | 0.0336 | 0.8556 | - |
463
+ | 4.7059 | 720 | 0.0155 | 0.0336 | 0.8555 | - |
464
+ | 4.7712 | 730 | 0.0179 | 0.0336 | 0.8553 | - |
465
+ | 4.8366 | 740 | 0.0158 | 0.0335 | 0.8553 | - |
466
+ | 4.9020 | 750 | 0.0143 | 0.0335 | 0.8553 | - |
467
+ | 4.9673 | 760 | 0.019 | 0.0335 | 0.8557 | - |
468
+ | 5.0327 | 770 | 0.0143 | 0.0334 | 0.8559 | - |
469
+ | 5.0980 | 780 | 0.0136 | 0.0334 | 0.8559 | - |
470
+ | 5.1634 | 790 | 0.0138 | 0.0334 | 0.8560 | - |
471
+ | 5.2288 | 800 | 0.0134 | 0.0333 | 0.8561 | - |
472
+ | 5.2941 | 810 | 0.0173 | 0.0333 | 0.8563 | - |
473
+ | 5.3595 | 820 | 0.0128 | 0.0333 | 0.8562 | - |
474
+ | 5.4248 | 830 | 0.0145 | 0.0333 | 0.8564 | - |
475
+ | 5.4902 | 840 | 0.0153 | 0.0333 | 0.8566 | - |
476
+ | 5.5556 | 850 | 0.0166 | 0.0333 | 0.8566 | - |
477
+ | 5.6209 | 860 | 0.0179 | 0.0332 | 0.8569 | - |
478
+ | 5.6863 | 870 | 0.0151 | 0.0332 | 0.8569 | - |
479
+ | 5.7516 | 880 | 0.0168 | 0.0332 | 0.8570 | - |
480
+ | 5.8170 | 890 | 0.0129 | 0.0332 | 0.8570 | - |
481
+ | 5.8824 | 900 | 0.015 | 0.0332 | 0.8569 | - |
482
+ | **5.9477** | **910** | **0.0148** | **0.0332** | **0.8569** | **-** |
483
+ | -1 | -1 | - | - | - | 0.8818 |
484
+
485
+ * The bold row denotes the saved checkpoint.
486
+
487
+ ### Framework Versions
488
+ - Python: 3.11.12
489
+ - Sentence Transformers: 3.4.0
490
+ - Transformers: 4.51.3
491
+ - PyTorch: 2.6.0+cu124
492
+ - Accelerate: 1.6.0
493
+ - Datasets: 3.2.0
494
+ - Tokenizers: 0.21.1
495
+
496
+ ## Citation
497
+
498
+ ### BibTeX
499
+
500
+ #### Sentence Transformers
501
+ ```bibtex
502
+ @inproceedings{reimers-2019-sentence-bert,
503
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
504
+ author = "Reimers, Nils and Gurevych, Iryna",
505
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
506
+ month = "11",
507
+ year = "2019",
508
+ publisher = "Association for Computational Linguistics",
509
+ url = "https://arxiv.org/abs/1908.10084",
510
+ }
511
+ ```
512
+
513
+ <!--
514
+ ## Glossary
515
+
516
+ *Clearly define terms in order to be accessible across audiences.*
517
+ -->
518
+
519
+ <!--
520
+ ## Model Card Authors
521
+
522
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
523
+ -->
524
+
525
+ <!--
526
+ ## Model Card Contact
527
+
528
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
529
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34cdffa42f793993b94f4d58b8d3346f650525997d2a01db8cf4e2f5e806aa19
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260