---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8082
- loss:CosineSimilarityLoss
base_model: yahyaabd/allstats-search-mini-v1-1-mnrl
widget:
- source_sentence: q-1355
sentences:
- Data ekonomi Desember 2017
- Indikator Ekonomi Desember 2017
- cb372fb781dab67080fe6adc
- source_sentence: q-8924
sentences:
- Profil Penduduk Indonesia Hasil Supas 2015
- Neraca Perdagangan Jasa Indonesia 2015
- 63daa471092bb2cb7c1fada6
- source_sentence: q-9175
sentences:
- Review regional PDRB per kabupaten/kota di Jawa-Bali 2007-2010 Buku 2
- 'Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2007-2010 Buku 2: Pulau Jawa-Bali'
- 48f3382904fcb8c941917365
- source_sentence: q-5917
sentences:
- 83013817939fe3736b37fd2e
- Volume Timbulan Sampah Perkotaan
- Statistik Perusahaan Informasi dan Komunikasi 2018
- source_sentence: q-4068
sentences:
- Berapa persentase rumah tangga dengan akses sanitasi layak?
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan
Negara, Juli 2020
- 43a5856225b1ff1cb95e319a
datasets:
- yahyaabd/bps-pub-cosine-pairs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9258570884432742
name: Pearson Cosine
- type: spearman_cosine
value: 0.8465367588935317
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9298965386903514
name: Pearson Cosine
- type: spearman_cosine
value: 0.8497087018007599
name: Spearman Cosine
---
# SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl) on the [bps-pub-cosine-pairs](https://huggingface.co/datasets/yahyaabd/bps-pub-cosine-pairs) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [yahyaabd/allstats-search-mini-v1-1-mnrl](https://huggingface.co/yahyaabd/allstats-search-mini-v1-1-mnrl)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [bps-pub-cosine-pairs](https://huggingface.co/datasets/yahyaabd/bps-pub-cosine-pairs)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-v2")
# Run inference
sentences = [
'q-4068',
'Berapa persentase rumah tangga dengan akses sanitasi layak?',
'43a5856225b1ff1cb95e319a',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-dev` and `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-dev | sts-test |
|:--------------------|:-----------|:-----------|
| pearson_cosine | 0.9259 | 0.9299 |
| **spearman_cosine** | **0.8465** | **0.8497** |
## Training Details
### Training Dataset
#### bps-pub-cosine-pairs
* Dataset: [bps-pub-cosine-pairs](https://huggingface.co/datasets/yahyaabd/bps-pub-cosine-pairs) at [d58662e](https://huggingface.co/datasets/yahyaabd/bps-pub-cosine-pairs/tree/d58662e02c5ee38ec1b5bdb83bd71150d9797d6f)
* Size: 8,082 training samples
* Columns: query_id, query, corpus_id, title, and score
* Approximate statistics based on the first 1000 samples:
| | query_id | query | corpus_id | title | score |
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | string | string | float |
| details |
q-1599 | Nilai Tukar Nelayan | 0b0da8fc2b6af9329a6d9cfe | Statistik Hotel dan Akomodasi Lainnya di Indonesia 2013 | 0.1 |
| q-3595 | Berapa angka statistik pertambangan non migas Indonesia periode 2012? | 3c83610c3e2e5242177e2b11 | Statistik Pertambangan Non Minyak dan Gas Bumi 2011-2015 | 0.9 |
| q-9112 | Bagaimana situasi angkatan kerja Indonesia di bulan Februari 2021? | b547a5642aeb04d071cb83d4 | Keadaan Angkatan Kerja di Indonesia Februari 2021 | 0.9 |
* Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### bps-pub-cosine-pairs
* Dataset: [bps-pub-cosine-pairs](https://huggingface.co/datasets/yahyaabd/bps-pub-cosine-pairs) at [d58662e](https://huggingface.co/datasets/yahyaabd/bps-pub-cosine-pairs/tree/d58662e02c5ee38ec1b5bdb83bd71150d9797d6f)
* Size: 1,010 evaluation samples
* Columns: query_id, query, corpus_id, title, and score
* Approximate statistics based on the first 1000 samples:
| | query_id | query | corpus_id | title | score |
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | string | string | float |
| details | q-1273 | Sosek Desember 2021 | b7890a143bc751d1d84dcf4a | Laporan Bulanan Data Sosial Ekonomi Desember 2021 | 0.9 |
| q-4882 | Ekspor Indonesia menurut SITC 2019-2020 | 9f3d9054c2f29bc478d56cd1 | Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode SITC, 2019-2020 | 0.9 |
| q-7141 | Pengeluaran konsumsi penduduk Indonesia Maret 2018 | 4194e924ca33f087b68ab2de | Pengeluaran untuk Konsumsi Penduduk Indonesia, Maret 2018 | 0.9 |
* Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 1e-05
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `label_smoothing_factor`: 0.01
- `eval_on_start`: True
#### All Hyperparameters