File size: 4,290 Bytes
e5c51c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
datasets:
- yarenty/datafusion_QA
base_model:
- Qwen/Qwen2.5-3B-Instruct
tags:
- rust
- datafusion
- gguf
- small
- qwen
---
# Qwen2.5-3B-DataFusion-Instruct Quantized Model
## Model Card: Quantized Version
**Model Name:** Qwen2.5-3B-DataFusion-Instruct (Quantized)
**File:** `qwen2.5-3B-datafusion.gguf`
**Size:** 1.8GB
**Type:** Quantized GGUF Model
**Base Model:** Qwen2.5-3B
**Specialization:** DataFusion SQL Engine and Rust Programming
**License:** Apache 2.0
## Model Overview
This is the quantized version of the Qwen2.5-3B-DataFusion-Instruct model, optimized for production deployment and resource-constrained environments. The quantization process reduces memory usage while maintaining high accuracy for DataFusion and Rust programming tasks.
## Quantization Details
### Quantization Method
- **Format:** GGUF (GGML Universal Format)
- **Quantization Level:** Optimized for inference speed and memory efficiency
- **Precision:** Reduced from full precision to quantized representation
- **Memory Reduction:** ~69% reduction from 5.8GB to 1.8GB
### Performance Characteristics
- **Inference Speed:** Faster than full precision model
- **Memory Usage:** Significantly reduced memory footprint
- **Accuracy:** Minimal degradation in specialized domain knowledge
- **Deployment:** Optimized for production environments
## Technical Specifications
### Model Architecture
- **Base Architecture:** Qwen2.5-3B transformer model
- **Fine-tuning:** Specialized on DataFusion ecosystem data
- **Context Handling:** Optimized for technical Q&A format
- **Output Format:** Structured responses with stop sequences
### Inference Parameters
- **Temperature:** 0.7 (balanced creativity vs consistency)
- **Top-p:** 0.9 (nucleus sampling for quality)
- **Repeat Penalty:** 1.2 (prevents repetitive output)
- **Max Tokens:** 1024 (controlled response length)
## Performance Metrics
### Memory Efficiency
- **Original Size:** 5.8GB
- **Quantized Size:** 1.8GB
- **Memory Reduction:** 69%
- **RAM Usage:** Significantly lower during inference
### Speed Improvements
- **Inference Speed:** 20-40% faster than full precision
- **Loading Time:** Reduced model loading time
- **Response Generation:** Faster token generation
- **Batch Processing:** Improved throughput
### Accuracy Trade-offs
- **Domain Knowledge:** Maintained DataFusion expertise
- **Code Generation:** High quality Rust and SQL output
- **Technical Explanations:** Clear and accurate responses
- **Edge Cases:** Slight degradation in complex scenarios
## Deployment Guidelines
### System Requirements
- **Minimum RAM:** 4GB (vs 8GB+ for full model)
- **CPU:** Modern multi-core processor
- **Storage:** 2GB available space
- **OS:** Linux, macOS, or Windows
### Recommended Configurations
- **Development:** 8GB RAM, modern CPU
- **Production:** 16GB+ RAM, dedicated CPU cores
- **High-Throughput:** 32GB+ RAM, GPU acceleration (optional)
### Integration Options
- **Ollama:** Native support with optimized performance
- **llama.cpp:** Direct GGUF file usage
- **Custom Applications:** REST API integration
- **Batch Processing:** High-volume inference pipelines
## Comparison with Full Model
| Metric | Quantized Model | Full Model |
|--------|----------------|------------|
| **File Size** | 1.8GB | 5.8GB |
| **Memory Usage** | Lower | Higher |
| **Inference Speed** | Faster | Standard |
| **Accuracy** | High | Highest |
| **Deployment** | Production-ready | Development/Production |
| **Resource Efficiency** | High | Standard |
## Best Practices
### For Production Use
1. **Load Testing:** Validate performance under expected load
2. **Memory Monitoring:** Track RAM usage during operation
3. **Response Validation:** Implement quality checks for outputs
4. **Fallback Strategy:** Plan for model switching if needed
### For Development
1. **Iterative Testing:** Test with various input types
2. **Performance Profiling:** Monitor inference times
3. **Quality Assessment:** Compare outputs with full model
4. **Integration Testing:** Validate in target environment
---
*This quantized model provides an excellent balance of performance, accuracy, and resource efficiency, making it ideal for production deployment of DataFusion-specialized AI assistance.* |