File size: 4,290 Bytes
e5c51c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: apache-2.0
datasets:
- yarenty/datafusion_QA
base_model:
- Qwen/Qwen2.5-3B-Instruct
tags:
- rust
- datafusion
- gguf
- small
- qwen
---

# Qwen2.5-3B-DataFusion-Instruct Quantized Model

## Model Card: Quantized Version

**Model Name:** Qwen2.5-3B-DataFusion-Instruct (Quantized)  
**File:** `qwen2.5-3B-datafusion.gguf`  
**Size:** 1.8GB  
**Type:** Quantized GGUF Model  
**Base Model:** Qwen2.5-3B  
**Specialization:** DataFusion SQL Engine and Rust Programming  
**License:** Apache 2.0  

## Model Overview

This is the quantized version of the Qwen2.5-3B-DataFusion-Instruct model, optimized for production deployment and resource-constrained environments. The quantization process reduces memory usage while maintaining high accuracy for DataFusion and Rust programming tasks.

## Quantization Details

### Quantization Method
- **Format:** GGUF (GGML Universal Format)
- **Quantization Level:** Optimized for inference speed and memory efficiency
- **Precision:** Reduced from full precision to quantized representation
- **Memory Reduction:** ~69% reduction from 5.8GB to 1.8GB

### Performance Characteristics
- **Inference Speed:** Faster than full precision model
- **Memory Usage:** Significantly reduced memory footprint
- **Accuracy:** Minimal degradation in specialized domain knowledge
- **Deployment:** Optimized for production environments


## Technical Specifications

### Model Architecture
- **Base Architecture:** Qwen2.5-3B transformer model
- **Fine-tuning:** Specialized on DataFusion ecosystem data
- **Context Handling:** Optimized for technical Q&A format
- **Output Format:** Structured responses with stop sequences

### Inference Parameters
- **Temperature:** 0.7 (balanced creativity vs consistency)
- **Top-p:** 0.9 (nucleus sampling for quality)
- **Repeat Penalty:** 1.2 (prevents repetitive output)
- **Max Tokens:** 1024 (controlled response length)

## Performance Metrics

### Memory Efficiency
- **Original Size:** 5.8GB
- **Quantized Size:** 1.8GB
- **Memory Reduction:** 69%
- **RAM Usage:** Significantly lower during inference

### Speed Improvements
- **Inference Speed:** 20-40% faster than full precision
- **Loading Time:** Reduced model loading time
- **Response Generation:** Faster token generation
- **Batch Processing:** Improved throughput

### Accuracy Trade-offs
- **Domain Knowledge:** Maintained DataFusion expertise
- **Code Generation:** High quality Rust and SQL output
- **Technical Explanations:** Clear and accurate responses
- **Edge Cases:** Slight degradation in complex scenarios

## Deployment Guidelines

### System Requirements
- **Minimum RAM:** 4GB (vs 8GB+ for full model)
- **CPU:** Modern multi-core processor
- **Storage:** 2GB available space
- **OS:** Linux, macOS, or Windows

### Recommended Configurations
- **Development:** 8GB RAM, modern CPU
- **Production:** 16GB+ RAM, dedicated CPU cores
- **High-Throughput:** 32GB+ RAM, GPU acceleration (optional)

### Integration Options
- **Ollama:** Native support with optimized performance
- **llama.cpp:** Direct GGUF file usage
- **Custom Applications:** REST API integration
- **Batch Processing:** High-volume inference pipelines

## Comparison with Full Model

| Metric | Quantized Model | Full Model |
|--------|----------------|------------|
| **File Size** | 1.8GB | 5.8GB |
| **Memory Usage** | Lower | Higher |
| **Inference Speed** | Faster | Standard |
| **Accuracy** | High | Highest |
| **Deployment** | Production-ready | Development/Production |
| **Resource Efficiency** | High | Standard |

## Best Practices

### For Production Use
1. **Load Testing:** Validate performance under expected load
2. **Memory Monitoring:** Track RAM usage during operation
3. **Response Validation:** Implement quality checks for outputs
4. **Fallback Strategy:** Plan for model switching if needed

### For Development
1. **Iterative Testing:** Test with various input types
2. **Performance Profiling:** Monitor inference times
3. **Quality Assessment:** Compare outputs with full model
4. **Integration Testing:** Validate in target environment







---

*This quantized model provides an excellent balance of performance, accuracy, and resource efficiency, making it ideal for production deployment of DataFusion-specialized AI assistance.*