File size: 3,094 Bytes
541fb50
ded51f7
 
541fb50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded51f7
541fb50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded51f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{
  "model_type": "xlm-roberta",

  "model_config": {
    "_name_or_path": "xlm-roberta-base",
    "architectures": [
      "XLMRobertaForSequenceClassification"
    ],
    "attention_probs_dropout_prob": 0.1,
    "bos_token_id": 0,
    "classifier_dropout": null,
    "eos_token_id": 2,
    "hidden_act": "gelu",
    "hidden_dropout_prob": 0.1,
    "hidden_size": 768,
    "initializer_range": 0.02,
    "intermediate_size": 3072,
    "layer_norm_eps": 1e-05,
    "max_position_embeddings": 514,
    "model_type": "xlm-roberta",
    "num_attention_heads": 12,
    "num_hidden_layers": 12,
    "output_past": true,
    "pad_token_id": 1,
    "position_embedding_type": "absolute",
    "problem_type": "single_label_classification",
    "torch_dtype": "float32",
    "transformers_version": "4.44.2",
    "type_vocab_size": 1,
    "use_cache": true,
    "vocab_size": 250002
  },

  "training_config": {
    "learning_rate": 2e-5,
    "num_train_epochs": 3,
    "per_device_train_batch_size": 16,
    "per_device_eval_batch_size": 16,
    "warmup_steps": 500,
    "weight_decay": 0.01,
    "logging_dir": "./logs",
    "evaluation_strategy": "epoch"
  },

  "tokenizer_config": {
    "model_max_length": 512,
    "padding_side": "right",
    "truncation_side": "right",
    "special_tokens": {
      "pad_token": "<pad>",
      "unk_token": "<unk>",
      "bos_token": "<s>",
      "eos_token": "</s>"
    }
  },

  "inference_config": {
    "task": "text-classification",
    "labels": ["HUMAN", "AI"],
    "threshold": 0.5,
    "max_length": 512,
    "batch_size": 32,
    "options": {
      "wait_for_model": true,
      "use_cache": true
    }
  },

  "api_config": {
    "endpoint": "https://api-inference.huggingface.co/models/yaya36095/text-detector",
    "headers": {
      "Content-Type": "application/json"
    },
    "cors": {
      "allow_origin": "*",
      "allow_headers": [
        "authorization",
        "x-client-info",
        "apikey",
        "content-type"
      ]
    }
  },

  "model_info": {
    "name": "text-detector",
    "version": "1.0.0",
    "author": "yaya36095",
    "description": "A model for detecting AI-generated vs human-written text",
    "license": "MIT",
    "repository": "https://huggingface.co/yaya36095/text-detector",
    "languages": ["multilingual"],
    "tags": [
      "text-classification",
      "ai-detection",
      "xlm-roberta"
    ]
  },

  "environment": {
    "framework": "transformers",
    "framework_version": "4.44.2",
    "python_version": ">=3.8.0",
    "cuda_support": true,
    "required_packages": {
      "torch": ">=1.10.0",
      "transformers": ">=4.44.2",
      "numpy": ">=1.19.0"
    }
  },

  "logging_config": {
    "level": "INFO",
    "format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
    "development_mode": {
      "debug": true,
      "verbose": true
    },
    "production_mode": {
      "debug": false,
      "verbose": false
    }
  },

  "performance_metrics": {
    "accuracy_threshold": 0.85,
    "latency_threshold_ms": 500,
    "max_batch_size": 64,
    "memory_limit_mb": 4096
  }
}