Rename handler.py to inference.py
Browse files- handler.py +0 -27
- inference.py +14 -0
handler.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
-
import torch
|
| 4 |
-
|
| 5 |
-
class TextClassifier:
|
| 6 |
-
def __init__(self, model_path=""):
|
| 7 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
| 8 |
-
self.model = AutoModelForSequenceClassification.from_pretrained(model_path, ignore_mismatched_sizes=True)
|
| 9 |
-
self.model.eval()
|
| 10 |
-
|
| 11 |
-
def predict(self, text):
|
| 12 |
-
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 13 |
-
with torch.no_grad():
|
| 14 |
-
outputs = self.model(**inputs)
|
| 15 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 16 |
-
return {
|
| 17 |
-
"label": "AI" if torch.argmax(probs) == 1 else "HUMAN",
|
| 18 |
-
"confidence": probs[0].tolist()
|
| 19 |
-
}
|
| 20 |
-
|
| 21 |
-
classifier = None
|
| 22 |
-
|
| 23 |
-
def predict(inputs):
|
| 24 |
-
global classifier
|
| 25 |
-
if classifier is None:
|
| 26 |
-
classifier = TextClassifier(model_path=".")
|
| 27 |
-
return classifier.predict(inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
| 2 |
+
|
| 3 |
+
class EndpointHandler:
|
| 4 |
+
def __init__(self, path=""):
|
| 5 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 6 |
+
path,
|
| 7 |
+
ignore_mismatched_sizes=True # ضروري لتجاوز المشكلة
|
| 8 |
+
)
|
| 9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 10 |
+
self.pipeline = pipeline("text-classification", model=self.model, tokenizer=self.tokenizer)
|
| 11 |
+
|
| 12 |
+
def __call__(self, data):
|
| 13 |
+
inputs = data.get("inputs") if isinstance(data, dict) else data
|
| 14 |
+
return self.pipeline(inputs)
|