--- license: mit pipeline_tag: text-classification library_name: transformers tags: - TEXT - MODEL - text-classification - ai-detection - xlm-roberta - multilingual - ext-classification - human-vs-ai --- # Text Detector ## 🧠 Model Description This model is designed to detect whether a text is AI-generated or human-written. It uses **XLM-RoBERTa** architecture for accurate **multilingual text classification**. --- ## 🔍 Model Usage ### 🐍 Python Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("yaya36095/text-detector") model = AutoModelForSequenceClassification.from_pretrained("yaya36095/text-detector") def detect_text(text): # Tokenize input inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) # Get prediction with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) # Process results scores = predictions[0].tolist() results = [ {"label": "HUMAN", "score": scores[0]}, {"label": "AI", "score": scores[1]} ] return { "prediction": results[0]["label"], "confidence": f"{results[0]['score']*100:.2f}%", "detailed_scores": [ f"{r['label']}: {r['score']*100:.2f}%" for r in results ] }