yiwenX's picture
Add comprehensive model card
7d2cd9d verified
---
base_model: openai/gpt-oss-20b
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- lora
- reasoning
- multilingual
model_type: lora
---
# gpt-oss-20b-multilingual-reasoner
This is a LoRA (Low-Rank Adaptation) fine-tuned model based on [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b).
## Model Details
- **Base Model**: openai/gpt-oss-20b
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Training Framework**: TRL (Transformer Reinforcement Learning)
- **LoRA Rank**: 8
- **LoRA Alpha**: 16
- **Target Modules**: q_proj, o_proj, v_proj, k_proj
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype=torch.float16,
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "yiwenX/gpt-oss-20b-multilingual-reasoner")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("yiwenX/gpt-oss-20b-multilingual-reasoner")
# Generate text
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Training Details
This model was fine-tuned using:
- **Framework**: TRL (Transformer Reinforcement Learning)
- **Method**: Supervised Fine-Tuning (SFT)
- **PEFT Type**: LoRA
- **Transformers Version**: 4.56.0
- **PyTorch Version**: 2.8.0+cu128
## Model Files
- `adapter_config.json`: LoRA configuration
- `adapter_model.safetensors`: LoRA weights
- `tokenizer.json`: Tokenizer vocabulary
- `tokenizer_config.json`: Tokenizer configuration
- `special_tokens_map.json`: Special tokens mapping
- `chat_template.jinja`: Chat template for conversation format