Update README.md
Browse files
README.md
CHANGED
|
@@ -138,6 +138,129 @@ Explore the dataset and runtime metrics of this model in timm [model results](ht
|
|
| 138 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 |
|
| 139 |
-->
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
## Citation
|
| 142 |
```bibtex
|
| 143 |
@inproceedings{zhou2024benchx,
|
|
|
|
| 138 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 |
|
| 139 |
-->
|
| 140 |
|
| 141 |
+
# ConVIRT Checkpoint Model Card
|
| 142 |
+
|
| 143 |
+
## Model Details
|
| 144 |
+
- **Model Type**: ConVIRT (Contrastive Learning of Medical Visual Representations from Paired Images and Text)
|
| 145 |
+
- **Architecture**: Dual-encoder architecture with ResNet-50 image encoder and BERT text encoder
|
| 146 |
+
- **Version**: 1.0.0
|
| 147 |
+
- **Last Updated**: November 2024
|
| 148 |
+
- **License**: MIT License
|
| 149 |
+
- **Primary Tasks**:
|
| 150 |
+
- Medical image-text representation learning
|
| 151 |
+
- Zero-shot medical image classification
|
| 152 |
+
- Medical image-text retrieval
|
| 153 |
+
|
| 154 |
+
## Intended Use
|
| 155 |
+
- **Primary Use Cases**:
|
| 156 |
+
- Learning transferable medical visual representations
|
| 157 |
+
- Cross-modal medical image and text retrieval
|
| 158 |
+
- Medical image classification with limited labeled data
|
| 159 |
+
- Feature extraction for downstream medical imaging tasks
|
| 160 |
+
- **Out-of-Scope Uses**:
|
| 161 |
+
- Clinical decision making without human oversight
|
| 162 |
+
- Direct patient diagnosis
|
| 163 |
+
- Processing of non-medical images
|
| 164 |
+
|
| 165 |
+
## Training Data
|
| 166 |
+
- **Dataset**: [Dataset details should be filled in]
|
| 167 |
+
- Number of image-text pairs: X
|
| 168 |
+
- Data source(s): e.g., MIMIC-CXR, Indiana Dataset
|
| 169 |
+
- Types of medical images: e.g., chest X-rays, CT scans
|
| 170 |
+
- Text data type: Associated radiology reports
|
| 171 |
+
- **Data Preprocessing**:
|
| 172 |
+
- Image resizing to 224x224
|
| 173 |
+
- Text cleaning and preprocessing
|
| 174 |
+
- Augmentations used: random crops, color jittering, horizontal flips
|
| 175 |
+
|
| 176 |
+
## Performance and Limitations
|
| 177 |
+
### Performance Metrics
|
| 178 |
+
- **Image-Text Retrieval**:
|
| 179 |
+
- R@1: X%
|
| 180 |
+
- R@5: X%
|
| 181 |
+
- R@10: X%
|
| 182 |
+
- **Transfer Learning Performance**:
|
| 183 |
+
- Classification accuracy on downstream tasks: X%
|
| 184 |
+
- Few-shot learning performance: X%
|
| 185 |
+
|
| 186 |
+
### Limitations
|
| 187 |
+
- Limited to 2D medical imaging modalities
|
| 188 |
+
- Performance may vary across different medical specialties
|
| 189 |
+
- May exhibit biases present in training data
|
| 190 |
+
- Requires high-quality text descriptions for optimal performance
|
| 191 |
+
|
| 192 |
+
## Ethical Considerations
|
| 193 |
+
- **Privacy**: Model trained on de-identified medical data
|
| 194 |
+
- **Bias**:
|
| 195 |
+
- Potential demographic biases from training data
|
| 196 |
+
- Geographic and institutional biases
|
| 197 |
+
- **Safety**:
|
| 198 |
+
- Not intended for standalone clinical use
|
| 199 |
+
- Should be used as a supportive tool only
|
| 200 |
+
|
| 201 |
+
## Technical Specifications
|
| 202 |
+
### Requirements
|
| 203 |
+
- Python ≥ 3.7
|
| 204 |
+
- PyTorch ≥ 1.7
|
| 205 |
+
- CUDA compatible GPU (≥ 11GB VRAM)
|
| 206 |
+
- Transformers library ≥ 4.0
|
| 207 |
+
|
| 208 |
+
### Model Architecture Details
|
| 209 |
+
- **Image Encoder**:
|
| 210 |
+
- ResNet-50 backbone
|
| 211 |
+
- Output dimension: 512
|
| 212 |
+
- **Text Encoder**:
|
| 213 |
+
- BERT-base-uncased
|
| 214 |
+
- Output dimension: 512
|
| 215 |
+
- **Training Parameters**:
|
| 216 |
+
- Batch size: 256
|
| 217 |
+
- Learning rate: 1e-4
|
| 218 |
+
- Temperature parameter: 0.1
|
| 219 |
+
- Training epochs: X
|
| 220 |
+
|
| 221 |
+
### Input Requirements
|
| 222 |
+
- **Images**:
|
| 223 |
+
- Resolution: 224x224 pixels
|
| 224 |
+
- Format: RGB
|
| 225 |
+
- Supported types: DICOM, PNG, JPEG
|
| 226 |
+
- **Text**:
|
| 227 |
+
- Maximum length: 512 tokens
|
| 228 |
+
- Language: English
|
| 229 |
+
|
| 230 |
+
## Citation
|
| 231 |
+
```bibtex
|
| 232 |
+
@article{zhang2020contrastive,
|
| 233 |
+
title={Contrastive Learning of Medical Visual Representations from Paired Images and Text},
|
| 234 |
+
author={Zhang, Yuhao and Jiang, Hang and Miura, Yasuhide and Manning, Christopher D and Langlotz, Curtis P},
|
| 235 |
+
journal={arXiv preprint arXiv:2010.00747},
|
| 236 |
+
year={2020}
|
| 237 |
+
}
|
| 238 |
+
```
|
| 239 |
+
|
| 240 |
+
## Maintainers
|
| 241 |
+
[Your organization/team information]
|
| 242 |
+
|
| 243 |
+
## Updates and Versions
|
| 244 |
+
- v1.0.0 (Current):
|
| 245 |
+
- Initial release
|
| 246 |
+
- Base model trained on [dataset]
|
| 247 |
+
- Performance benchmarks established
|
| 248 |
+
|
| 249 |
+
## Getting Started
|
| 250 |
+
```python
|
| 251 |
+
from convirt import ConVIRT
|
| 252 |
+
|
| 253 |
+
# Load the model
|
| 254 |
+
model = ConVIRT.from_pretrained('path/to/checkpoint')
|
| 255 |
+
|
| 256 |
+
# Extract features
|
| 257 |
+
image_features = model.encode_image(image)
|
| 258 |
+
text_features = model.encode_text(text)
|
| 259 |
+
|
| 260 |
+
# Compute similarity
|
| 261 |
+
similarity = model.compute_similarity(image_features, text_features)
|
| 262 |
+
```
|
| 263 |
+
|
| 264 |
## Citation
|
| 265 |
```bibtex
|
| 266 |
@inproceedings{zhou2024benchx,
|