zcash commited on
Commit
7f7930a
·
verified ·
1 Parent(s): 068792f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +90 -25
README.md CHANGED
@@ -1,28 +1,93 @@
1
- ---
2
- license: mit
3
- tags:
4
- - pytorch
5
- - pytorch-lightning
6
- - dem
7
- - super-resolution
8
- - remote-sensing
9
- ---
10
-
11
- # DEM Super-Resolution Model
12
-
13
- This is a trained PyTorch Lightning model for super-resolving 30m SRTM DEMs to 10m resolution using Sentinel-2 imagery.
14
-
15
- ## Model Details
16
- - **Architecture**: U-Net with ResNet34 encoder
17
- - **Input Channels**: 7 (SRTM, RGB, NIR, NDVI, mask)
18
- - **Output**: Residual corrections for DEM super-resolution
19
- - **Training Data**: McKinley Mine LiDAR DEM
20
- - **Inference**: Applied to Marrakech, Morocco
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  ## Usage
23
- ```python
24
- import torch
25
- from your_model_loading_code import DeepDEMRefinement
26
 
27
- model = DeepDEMRefinement.load_from_checkpoint("deepdem_model.ckpt")
28
- # Use as needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DEM Super-Resolution
2
+
3
+ This repository contains a pipeline for generating synthetic high-resolution Digital Elevation Models (DEMs) by super-resolving 30m SRTM data to 10m resolution, fused with Sentinel-2 imagery. The model is trained on high-resolution LiDAR DEM data from McKinley Mine, NM, and applied to generate DEMs for Marrakech, Morocco.
4
+
5
+ ## Overview
6
+
7
+ The implementation uses an adapted DeepDEM model with a U-Net architecture (ResNet34 encoder) that takes 7 input channels:
8
+ - SRTM DEM (30m)
9
+ - Sentinel-2 RGB bands (10m)
10
+ - Sentinel-2 NIR band (10m)
11
+ - NDVI
12
+ - Nodata mask
13
+
14
+ The model predicts residual corrections to be added to a smoothed SRTM trend, producing 10m synthetic DEMs.
15
+
16
+ ## Requirements
17
+
18
+ - Python 3.8+
19
+ - PyTorch 2.0+
20
+ - PyTorch Lightning
21
+ - Segmentation Models PyTorch
22
+ - Rasterio
23
+ - Geopandas
24
+ - Albumentations
25
+ - Earth Engine API (for data acquisition)
26
+ - GDAL
27
+ - Boto3 (for LiDAR data download)
28
+
29
+ ## Installation
30
+
31
+ 1. Clone the repository:
32
+ ```bash
33
+ git clone https://github.com/yourusername/DEM_SuperRes.git
34
+ cd DEM_SuperRes
35
+ ```
36
+
37
+ 2. Install dependencies:
38
+ ```bash
39
+ pip install torch torchvision torchaudio pytorch-lightning segmentation-models-pytorch rasterio geopandas albumentations scipy gdown earthengine-api boto3
40
+ ```
41
+
42
+ 3. Install system dependencies:
43
+ ```bash
44
+ apt-get install libspatialindex-dev libgdal-dev gdal-bin
45
+ pip install gdal
46
+ ```
47
+
48
+ ## Data Acquisition
49
+
50
+ The notebook handles data acquisition from:
51
+ - **SRTM 30m DEM**: CGIAR/SRTM90_V4 via Google Earth Engine
52
+ - **Sentinel-2 10m imagery**: COPERNICUS/S2_SR_HARMONIZED via Google Earth Engine
53
+ - **High-resolution LiDAR DEM**: OpenTopography (McKinley Mine, NM)
54
+
55
+ Authenticate with Google Earth Engine and ensure access to required datasets.
56
 
57
  ## Usage
 
 
 
58
 
59
+ 1. Open `DEM_SuperRes.ipynb` in Google Colab or Jupyter.
60
+ 2. Run cells sequentially to:
61
+ - Acquire and preprocess training data (McKinley)
62
+ - Train the model
63
+ - Acquire and preprocess inference data (Marrakech)
64
+ - Generate synthetic DEM
65
+ - Run validation checks
66
+
67
+ 3. Key outputs:
68
+ - Trained model: `Models/deepdem_model.ckpt`
69
+ - Synthetic DEM: `synth_dem_marrakech.tif`
70
+
71
+ ## Model Training
72
+
73
+ - **Architecture**: U-Net with ResNet34 encoder, 7 input channels, 1 output channel (residuals)
74
+ - **Loss**: L1 loss
75
+ - **Optimizer**: Adam (lr=1e-4)
76
+ - **Training**: 5 epochs on random crops from McKinley DEM
77
+ - **Data Augmentation**: Random crops, rotations, flips, noise
78
+
79
+ ## Validation
80
+
81
+ The notebook includes checks for:
82
+ - Input data statistics and validity
83
+ - Training fit (MAE/RMSE on validation crops)
84
+ - Output alignment and correlation with SRTM trend
85
+
86
+ ## Citation
87
+
88
+ If you use this work, please cite the original DeepDEM paper and datasets used.
89
+
90
+ ## License
91
+
92
+ [Add your license here]</content>
93
+ <parameter name="filePath">/home/besudo/Git/deepdem/DEM_SuperRes/README.md