motion-stream / .ipynb_checkpoints /train_motionstreamer-checkpoint.py
zirobtc's picture
Initial upload of MotionStreamer code, excluding large extracted data and output folders.
0e267a7 verified
"""Train streaming motion generation model (MotionStreamer) with llama blocks, Two-Forward strategy and QK-Norm, using the motion latents encoded by the Causal TAE (trained in the first stage)."""
import os
import torch
import numpy as np
import random
from torch.utils.tensorboard import SummaryWriter
import json
from accelerate import Accelerator
from tqdm import tqdm
from models.llama_model import LLaMAHF, LLaMAHFConfig
import options.option_transformer as option_trans
import utils.utils_model as utils_model
import warnings
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR
warnings.filterwarnings('ignore')
os.environ["TOKENIZERS_PARALLELISM"] = "false"
##### ---- Exp dirs ---- #####
args = option_trans.get_args_parser()
torch.manual_seed(args.seed)
# warm-up + cosine decay scheduler
class WarmupCosineDecayScheduler:
def __init__(self, optimizer, warmup_iters, total_iters, min_lr=0):
self.optimizer = optimizer
self.warmup_iters = warmup_iters
self.total_iters = total_iters
self.min_lr = min_lr
self.warmup_scheduler = LambdaLR(optimizer, lr_lambda=self.warmup_lambda)
self.cosine_scheduler = CosineAnnealingLR(optimizer,
T_max=total_iters - warmup_iters,
eta_min=min_lr)
def warmup_lambda(self, current_iter):
if current_iter < self.warmup_iters:
return float(current_iter) / float(max(1, self.warmup_iters))
return 1.0
def step(self, current_iter):
if current_iter < self.warmup_iters:
self.warmup_scheduler.step()
else:
self.cosine_scheduler.step()
def state_dict(self):
return {
'warmup_iters': self.warmup_iters,
'total_iters': self.total_iters,
'min_lr': self.min_lr,
}
def load_state_dict(self, state_dict):
self.warmup_iters = state_dict['warmup_iters']
self.total_iters = state_dict['total_iters']
self.min_lr = state_dict['min_lr']
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
os.makedirs(args.out_dir, exist_ok = True)
##### ---- Accelerator Setup ---- #####
accelerator = Accelerator()
comp_device = accelerator.device
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
##### ---- Dataloader ---- #####
from humanml3d_272 import dataset_TM_train_motionstreamer
train_loader = dataset_TM_train_motionstreamer.DATALoader(args.dataname, args.batch_size, unit_length=2**args.down_t, latent_dir=args.latent_dir)
##### ---- Network ---- #####
from sentence_transformers import SentenceTransformer
t5_model = SentenceTransformer('sentencet5-xxl/')
t5_model.eval()
for p in t5_model.parameters():
p.requires_grad = False
config = LLaMAHFConfig.from_name('Normal_size')
config.block_size = 78
trans_encoder = LLaMAHF(config, args.num_diffusion_head_layers, args.latent_dim, comp_device)
if args.resume_trans is not None:
print('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
new_ckpt_trans = {}
for key in ckpt['trans'].keys():
if key.split('.')[0]=='module':
new_key = '.'.join(key.split('.')[1:])
else:
new_key = key
new_ckpt_trans[new_key] = ckpt['trans'][key]
trans_encoder.load_state_dict(new_ckpt_trans, strict=True)
trans_encoder.train()
trans_encoder.to(comp_device)
##### ---- Optimizer & Scheduler ---- #####
optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer)
scheduler = WarmupCosineDecayScheduler(optimizer, args.total_iter//10, args.total_iter)
t5_model, trans_encoder, optimizer, train_loader = accelerator.prepare(t5_model, trans_encoder, optimizer, train_loader)
train_loader_iter = dataset_TM_train_motionstreamer.cycle(train_loader)
diffmlps_batch_mul = 4
def lengths_to_mask(lengths, max_len):
mask = torch.arange(max_len, device=lengths.device).expand(len(lengths), max_len) < lengths.unsqueeze(1)
return mask
def get_mask_subset_prob(mask, prob):
subset_mask = torch.bernoulli(mask, p=prob) & mask
return subset_mask
def uniform(shape, device=None):
return torch.zeros(shape, device=device).float().uniform_(0, 1)
import math
def cosine_schedule(t):
return torch.cos(t * math.pi * 0.5)
#--------------2-forward:------------------
def cosine_decay(step, total_steps, start_value=1.0, end_value=0.0):
step = torch.tensor(step, dtype=torch.float32)
total_steps = torch.tensor(total_steps, dtype=torch.float32)
cosine_factor = 0.5 * (1 + torch.cos(torch.pi * step / total_steps))
return start_value + (end_value - start_value) * cosine_factor
def replace_with_pred(latents, pred_xstart, step, total_steps):
decay_factor = cosine_decay(step, total_steps).to(latents.device)
b, l, d = latents.shape
num_replace = int(l * decay_factor)
replace_indices = torch.randperm(l)[:num_replace]
replace_mask = torch.zeros(b, l, dtype=torch.bool).to(latents.device)
replace_mask[:, replace_indices] = 1
updated_latents = latents.clone()
updated_latents[replace_mask] = pred_xstart[replace_mask]
return updated_latents
def forward_loss_withmask_2_forward_streaming(latents, trans, m_lens, feat_text, step, total_steps, A_token_length):
latents = latents.to(comp_device)
feat_text = feat_text.to(comp_device)
A_token_length = A_token_length.to(comp_device)
conditions = trans(latents, feat_text)
conditions = conditions.contiguous()
z = conditions[:,:-1,:]
b, l, d = latents.shape
mask = lengths_to_mask(m_lens, l)
for j in range(b):
mask[j, :A_token_length[j].item()] = False # A_motion token: do not compute loss
mask = mask.reshape(b * l).repeat(diffmlps_batch_mul)
target = latents.clone().detach()
target = target.reshape(b * l, -1)
z = z.reshape(b * l, -1)
with torch.no_grad():
loss, pred_xstart = trans.diff_loss(target=target, z=z)
pred_xstart = pred_xstart.clone().detach()
pred_xstart = pred_xstart.reshape(b, l, -1)
# do not replace A_motion tokens
for k in range(b):
pred_xstart[k, :A_token_length[k].item(),:] = latents[k, :A_token_length[k].item(),:]
updated_latents = replace_with_pred(latents, pred_xstart, step, total_steps)
updated_conditions = trans(updated_latents, feat_text)
updated_conditions = updated_conditions.contiguous()
updated_z = updated_conditions[:,:-1,:]
updated_target = latents.clone().detach()
updated_target = updated_target.reshape(b * l, -1).repeat(diffmlps_batch_mul, 1)
updated_z = updated_z.reshape(b * l, -1).repeat(diffmlps_batch_mul, 1)
updated_target = updated_target[mask]
updated_z = updated_z[mask]
updated_loss, updated_pred_xstart = trans.diff_loss(target=updated_target, z=updated_z)
return updated_loss
##### ---- Training Loop ---- #####
avg_loss_cls = 0.
pbar = tqdm(range(1, args.total_iter + 1), desc="Training MotionStreamer")
for nb_iter in pbar:
batch = next(train_loader_iter)
caption, m_tokens, m_tokens_len, A_token_length = batch
caption = list(caption)
m_tokens, m_tokens_len = m_tokens.to(comp_device), m_tokens_len.to(comp_device)
A_token_length = A_token_length.to(comp_device)
bs = len(caption)
num_masked = int(bs * 0.1) # 10%
mask_indices = random.sample(range(bs), num_masked)
for idx in mask_indices:
caption[idx] = ''
feat_text = torch.from_numpy(t5_model.encode(caption)).float()
feat_text = feat_text.to(comp_device)
# -------gt--------
input_latent = m_tokens[:,:-1,:] # continuous token
loss_cls = 0.0
if args.num_gpus > 1:
loss_cls = forward_loss_withmask_2_forward_streaming(latents=input_latent, trans=trans_encoder.module, m_lens = m_tokens_len, feat_text=feat_text, step=nb_iter, total_steps=args.total_iter, A_token_length=A_token_length)
else:
loss_cls = forward_loss_withmask_2_forward_streaming(latents=input_latent, trans=trans_encoder, m_lens = m_tokens_len, feat_text=feat_text, step=nb_iter, total_steps=args.total_iter, A_token_length=A_token_length)
# backward & optimizer step
optimizer.zero_grad()
accelerator.backward(loss_cls)
optimizer.step()
scheduler.step(nb_iter)
avg_loss_cls = avg_loss_cls + loss_cls.item()
args.print_iter = 100
if nb_iter % args.print_iter == 0 :
if accelerator.is_main_process:
avg_loss_cls = avg_loss_cls / args.print_iter
lr = optimizer.param_groups[0]['lr']
writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter)
writer.add_scalar('./LR/train', optimizer.param_groups[0]['lr'], nb_iter)
msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}"
tqdm.write(f"Iter {nb_iter} | Loss: {avg_loss_cls:.5f} | LR: {lr:.6f}")
logger.info(msg)
avg_loss_cls = 0.
args.save_iter = 10000
if nb_iter % args.save_iter == 0:
# save checkpoint
if accelerator.is_main_process:
torch.save({
'trans': trans_encoder.state_dict(),
}, os.path.join(args.out_dir, f'latest.pth'))
accelerator.wait_for_everyone()