| NUM_GPUS=${1:-1} # default: 1 GPU | |
| dataset_name=${2:-t2m_272} # default: t2m_272, options: t2m_272, t2m_babel_272 | |
| BATCH_SIZE=$((128 / NUM_GPUS)) | |
| echo "Using $NUM_GPUS GPUs, each with a batch size of $BATCH_SIZE" | |
| accelerate launch --num_processes $NUM_GPUS train_causal_TAE.py \ | |
| --batch-size $BATCH_SIZE \ | |
| --lr 0.00005 \ | |
| --total-iter 2000000 \ | |
| --lr-scheduler 1900000 \ | |
| --down-t 2 \ | |
| --depth 3 \ | |
| --dilation-growth-rate 3 \ | |
| --out-dir Experiments \ | |
| --dataname $dataset_name \ | |
| --exp-name causal_TAE_${dataset_name} \ | |
| --root_loss 7.0 \ | |
| --latent_dim 16 \ | |
| --hidden_size 1024 \ | |
| --num_gpus $NUM_GPUS | 
