Initial upload of MotionStreamer code, excluding large extracted data and output folders.
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Causal_TAE/net_last.pth +3 -0
- Causal_TAE_t2m_babel/net_last.pth +3 -0
- Evaluator_272/.DS_Store +0 -0
- Evaluator_272/configs/assets.yaml +13 -0
- Evaluator_272/configs/base.yaml +92 -0
- Evaluator_272/configs/configs_evaluator_272/H3D-TMR.yaml +95 -0
- Evaluator_272/configs/modules/denoiser.yaml +22 -0
- Evaluator_272/configs/modules/evaluators.yaml +20 -0
- Evaluator_272/configs/modules/motion_vae.yaml +15 -0
- Evaluator_272/configs/modules/scheduler.yaml +25 -0
- Evaluator_272/configs/modules/text_encoder.yaml +8 -0
- Evaluator_272/configs/modules_temos/motiondecoder.yaml +11 -0
- Evaluator_272/configs/modules_temos/motionencoder.yaml +12 -0
- Evaluator_272/configs/modules_temos/text_encoder.yaml +13 -0
- Evaluator_272/datasets/__init__.py +0 -0
- Evaluator_272/mld/__init__.py +0 -0
- Evaluator_272/mld/callback/__init__.py +1 -0
- Evaluator_272/mld/callback/progress.py +54 -0
- Evaluator_272/mld/config.py +104 -0
- Evaluator_272/mld/data/HumanML3D_272.py +131 -0
- Evaluator_272/mld/data/__init__.py +0 -0
- Evaluator_272/mld/data/base.py +105 -0
- Evaluator_272/mld/data/get_data.py +183 -0
- Evaluator_272/mld/data/humanml/__init__.py +0 -0
- Evaluator_272/mld/data/humanml/common/quaternion.py +423 -0
- Evaluator_272/mld/data/humanml/common/skeleton.py +199 -0
- Evaluator_272/mld/data/humanml/data/__init__.py +0 -0
- Evaluator_272/mld/data/humanml/data/dataset.py +227 -0
- Evaluator_272/mld/data/humanml/scripts/motion_process.py +576 -0
- Evaluator_272/mld/data/humanml/utils/__init__.py +0 -0
- Evaluator_272/mld/data/humanml/utils/metrics.py +142 -0
- Evaluator_272/mld/data/humanml/utils/paramUtil.py +63 -0
- Evaluator_272/mld/data/humanml/utils/plot_script.py +103 -0
- Evaluator_272/mld/data/humanml/utils/utils.py +163 -0
- Evaluator_272/mld/data/humanml/utils/word_vectorizer.py +143 -0
- Evaluator_272/mld/data/sampling/__init__.py +2 -0
- Evaluator_272/mld/data/sampling/base.py +41 -0
- Evaluator_272/mld/data/sampling/framerate.py +32 -0
- Evaluator_272/mld/data/sampling/frames.py +58 -0
- Evaluator_272/mld/data/utils.py +38 -0
- Evaluator_272/mld/launch/__init__.py +0 -0
- Evaluator_272/mld/launch/blender.py +23 -0
- Evaluator_272/mld/launch/prepare.py +66 -0
- Evaluator_272/mld/launch/tools.py +9 -0
- Evaluator_272/mld/models/__init__.py +0 -0
- Evaluator_272/mld/models/architectures/__init__.py +0 -0
- Evaluator_272/mld/models/architectures/actor_vae.py +258 -0
- Evaluator_272/mld/models/architectures/fc.py +100 -0
- Evaluator_272/mld/models/architectures/gpt/clip.py +90 -0
- Evaluator_272/mld/models/architectures/gpt/pos_encoding.py +43 -0
Causal_TAE/net_last.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8becaeebbd0588d7080ea3baf19ca036fe06851035c8b5f214dac1a5cf23949c
|
| 3 |
+
size 304843534
|
Causal_TAE_t2m_babel/net_last.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d4cf982269fed7887c45076852fe44be3611ac3c7761caaa5c849a8725ae3c6
|
| 3 |
+
size 304843534
|
Evaluator_272/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
Evaluator_272/configs/assets.yaml
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FOLDER: './experiments' # Experiment files saving path
|
| 2 |
+
|
| 3 |
+
TEST:
|
| 4 |
+
FOLDER: './results' # Testing files saving path
|
| 5 |
+
|
| 6 |
+
DATASET:
|
| 7 |
+
HUMANML3D_272:
|
| 8 |
+
ROOT: './datasets/humanml3d_272' # HumanML3D_272 directory
|
| 9 |
+
SPLIT_ROOT: './datasets/humanml3d_272/split' # HumanML3D_272 splits directory
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
bert_path: './deps/distilbert-base-uncased'
|
| 13 |
+
|
Evaluator_272/configs/base.yaml
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
SEED_VALUE: 1234
|
| 2 |
+
DEBUG: True
|
| 3 |
+
TRAIN:
|
| 4 |
+
SPLIT: 'train'
|
| 5 |
+
NUM_WORKERS: 2 # Number of workers
|
| 6 |
+
BATCH_SIZE: 4 # Size of batches
|
| 7 |
+
START_EPOCH: 0 # Start epoch
|
| 8 |
+
END_EPOCH: 400 # End epoch
|
| 9 |
+
RESUME: '' # Experiment path to be resumed training
|
| 10 |
+
PRETRAINED_VAE: ''
|
| 11 |
+
PRETRAINED: '' # Pretrained model path
|
| 12 |
+
|
| 13 |
+
OPTIM:
|
| 14 |
+
OPTIM.TYPE: 'AdamW' # Optimizer type
|
| 15 |
+
OPTIM.LR: 1e-4 # Learning rate
|
| 16 |
+
|
| 17 |
+
ABLATION:
|
| 18 |
+
VAE_TYPE: 'actor' # vae ablation: actor or mcross
|
| 19 |
+
VAE_ARCH: 'encoder_decoder' # mdiffusion vae architecture
|
| 20 |
+
PE_TYPE: 'actor' # mdiffusion mld or actor
|
| 21 |
+
DIFF_PE_TYPE: 'actor' # mdiffusion mld or actor
|
| 22 |
+
SKIP_CONNECT: False # skip connection for denoiser va
|
| 23 |
+
# use linear to expand mean and std rather expand token nums
|
| 24 |
+
MLP_DIST: False
|
| 25 |
+
IS_DIST: False # Mcross distribution kl
|
| 26 |
+
PREDICT_EPSILON: True # noise or motion
|
| 27 |
+
|
| 28 |
+
EVAL:
|
| 29 |
+
SPLIT: 'gtest'
|
| 30 |
+
BATCH_SIZE: 1 # Evaluating Batch size
|
| 31 |
+
NUM_WORKERS: 12 # Evaluating Batch size
|
| 32 |
+
|
| 33 |
+
TEST:
|
| 34 |
+
TEST_DIR: ''
|
| 35 |
+
CHECKPOINTS: '' # Pretrained model path
|
| 36 |
+
SPLIT: 'gtest'
|
| 37 |
+
BATCH_SIZE: 1 # Testing Batch size
|
| 38 |
+
NUM_WORKERS: 12 # Evaluating Batch size
|
| 39 |
+
SAVE_PREDICTIONS: False # Weather to save predictions
|
| 40 |
+
COUNT_TIME: False # Weather to count time during test
|
| 41 |
+
REPLICATION_TIMES: 20 # Number of times to replicate the test
|
| 42 |
+
MM_NUM_SAMPLES: 100 # Number of samples for multimodal test
|
| 43 |
+
MM_NUM_REPEATS: 30 # Number of repeats for multimodal test
|
| 44 |
+
MM_NUM_TIMES: 10 # Number of times to repeat the multimodal test
|
| 45 |
+
DIVERSITY_TIMES: 300 # Number of times to repeat the diversity test
|
| 46 |
+
REP_I: 0
|
| 47 |
+
model:
|
| 48 |
+
target: 'modules'
|
| 49 |
+
t2m_textencoder:
|
| 50 |
+
dim_word: 300
|
| 51 |
+
dim_pos_ohot: 15
|
| 52 |
+
dim_text_hidden: 512
|
| 53 |
+
dim_coemb_hidden: 512
|
| 54 |
+
|
| 55 |
+
t2m_motionencoder:
|
| 56 |
+
dim_move_hidden: 512
|
| 57 |
+
dim_move_latent: 512
|
| 58 |
+
dim_motion_hidden: 1024
|
| 59 |
+
dim_motion_latent: 512
|
| 60 |
+
LOSS:
|
| 61 |
+
LAMBDA_LATENT: 1e-5 # Lambda for latent losses
|
| 62 |
+
LAMBDA_KL: 1e-5 # Lambda for kl losses
|
| 63 |
+
LAMBDA_REC: 1.0 # Lambda for reconstruction losses
|
| 64 |
+
LAMBDA_JOINT: 1.0 # Lambda for joint losses
|
| 65 |
+
LAMBDA_GEN: 1.0 # Lambda for text-motion generation losses
|
| 66 |
+
LAMBDA_CROSS: 1.0 # Lambda for cross-reconstruction losses
|
| 67 |
+
LAMBDA_CYCLE: 1.0 # Lambda for cycle losses
|
| 68 |
+
LAMBDA_PRIOR: 0.0
|
| 69 |
+
DIST_SYNC_ON_STEP: True
|
| 70 |
+
METRIC:
|
| 71 |
+
FORCE_IN_METER: True
|
| 72 |
+
DIST_SYNC_ON_STEP: True
|
| 73 |
+
DATASET:
|
| 74 |
+
NCLASSES: 10
|
| 75 |
+
SAMPLER:
|
| 76 |
+
MAX_SQE: -1
|
| 77 |
+
MAX_LEN: 196
|
| 78 |
+
MIN_LEN: 40
|
| 79 |
+
MAX_TEXT_LEN: 20
|
| 80 |
+
HUMANML3D_272:
|
| 81 |
+
UNIT_LEN: 4
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
LOGGER:
|
| 85 |
+
SACE_CHECKPOINT_EPOCH: 1
|
| 86 |
+
LOG_EVERY_STEPS: 1
|
| 87 |
+
VAL_EVERY_STEPS: 10
|
| 88 |
+
TENSORBOARD: true
|
| 89 |
+
WANDB:
|
| 90 |
+
OFFLINE: false
|
| 91 |
+
PROJECT: null
|
| 92 |
+
RESUME_ID: null
|
Evaluator_272/configs/configs_evaluator_272/H3D-TMR.yaml
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
NAME: EXP1 # Experiment name
|
| 2 |
+
DEBUG: False # Debug mode
|
| 3 |
+
ACCELERATOR: 'gpu' # Devices optioncal: “cpu”, “gpu”, “tpu”, “ipu”, “hpu”, “mps, “auto”
|
| 4 |
+
DEVICE: [0] # Index of gpus eg. [0] or [0,1,2,3]
|
| 5 |
+
# DEVICE: [0] # Index of gpus eg. [0] or [0,1,2,3]
|
| 6 |
+
|
| 7 |
+
# Training configuration
|
| 8 |
+
TRAIN:
|
| 9 |
+
#---------------------------------
|
| 10 |
+
STAGE: temos # stage "vae" or "diffusion", "vae_diffusion"
|
| 11 |
+
#---------------------------------
|
| 12 |
+
DATASETS: ['humanml3d_272'] # Training datasets
|
| 13 |
+
NUM_WORKERS: 11 # Number of workers
|
| 14 |
+
BATCH_SIZE: 256 # Size of batches
|
| 15 |
+
START_EPOCH: 0 # Start epochMMOTIONENCODER
|
| 16 |
+
END_EPOCH: 100 # End epoch
|
| 17 |
+
RESUME: '' # Resume training from this path
|
| 18 |
+
OPTIM:
|
| 19 |
+
TYPE: AdamW # Optimizer type
|
| 20 |
+
LR: 1e-4 # Learning rate
|
| 21 |
+
PRETRAINED_MLD: False
|
| 22 |
+
|
| 23 |
+
# Evaluating Configuration
|
| 24 |
+
EVAL:
|
| 25 |
+
DATASETS: ['humanml3d_272'] # Evaluating datasets
|
| 26 |
+
BATCH_SIZE: 32 # Evaluating Batch size
|
| 27 |
+
SPLIT: test
|
| 28 |
+
eval_self_on_gt: True
|
| 29 |
+
|
| 30 |
+
# Test Configuration
|
| 31 |
+
TEST:
|
| 32 |
+
PRETRAINED_CHECKPOINTS_VAE: ''
|
| 33 |
+
SAVE_PREDICTIONS: False
|
| 34 |
+
CHECKPOINTS: '' # Pretrained model path
|
| 35 |
+
DATASETS: ['humanml3d_272'] # training datasets
|
| 36 |
+
SPLIT: test
|
| 37 |
+
BATCH_SIZE: 32 # training Batch size
|
| 38 |
+
MEAN: False
|
| 39 |
+
NUM_SAMPLES: 1
|
| 40 |
+
FACT: 1
|
| 41 |
+
inference_vq_code: False
|
| 42 |
+
# REPLICATION_TIM
|
| 43 |
+
|
| 44 |
+
# Datasets Configuration
|
| 45 |
+
DATASET:
|
| 46 |
+
JOINT_TYPE: 'humanml3d_v3' # join type
|
| 47 |
+
VERSION: ''
|
| 48 |
+
MOTION_TYPE: ''
|
| 49 |
+
METRIC:
|
| 50 |
+
TYPE: ['TMR_TM2TMetrics']
|
| 51 |
+
# Losses Configuration
|
| 52 |
+
LOSS:
|
| 53 |
+
TYPE: temos # Losses type
|
| 54 |
+
USE_INFONCE: True
|
| 55 |
+
USE_INFONCE_FILTER: True
|
| 56 |
+
LAMBDA_LATENT: 1.0e-5 # Lambda for latent Losses
|
| 57 |
+
LAMBDA_KL: 1.0e-5 # Lambda for kl Losses
|
| 58 |
+
LAMBDA_REC: 1.0 # Lambda for reconstruction Losses
|
| 59 |
+
LAMBDA_GEN: 1.0 # Lambda for text-motion generation losses
|
| 60 |
+
LAMBDA_CROSS: 1.0 # Lambda for reconstruction Losses
|
| 61 |
+
LAMBDA_CYCLE: 0.0 # Lambda for cycle Losses
|
| 62 |
+
LAMBDA_PRIOR: 0.0
|
| 63 |
+
LAMBDA_INFONCE: 0.1 # Lambda for infonce
|
| 64 |
+
INFONCE_TEMP: 0.1
|
| 65 |
+
DIST_SYNC_ON_STEP: False # Sync Losses on step when distributed trained
|
| 66 |
+
USE_RECLIPLOSS: False
|
| 67 |
+
SYNC: False
|
| 68 |
+
TRAIN_TMR: False
|
| 69 |
+
|
| 70 |
+
# Model Configuration
|
| 71 |
+
model:
|
| 72 |
+
vae: true # whether vae model
|
| 73 |
+
model_type: temos # model type
|
| 74 |
+
condition: 'text'
|
| 75 |
+
target: modules_temos
|
| 76 |
+
#####
|
| 77 |
+
latent_dim: 256 # latent dimension
|
| 78 |
+
ff_size: 1024 #
|
| 79 |
+
num_layers: 4 # number of layers
|
| 80 |
+
num_head: 6 # number of head layers
|
| 81 |
+
dropout: 0.1 # dropout rate
|
| 82 |
+
activation: gelu # activation type
|
| 83 |
+
eval_text_encode_way: given_glove
|
| 84 |
+
eval_text_source: token
|
| 85 |
+
|
| 86 |
+
# Logger configuration
|
| 87 |
+
LOGGER:
|
| 88 |
+
SAVE_CHECKPOINT_EPOCH: 10
|
| 89 |
+
LOG_EVERY_STEPS: 1
|
| 90 |
+
VAL_EVERY_STEPS: 5
|
| 91 |
+
TENSORBOARD: True
|
| 92 |
+
WANDB:
|
| 93 |
+
PROJECT: null
|
| 94 |
+
OFFLINE: False
|
| 95 |
+
RESUME_ID: null
|
Evaluator_272/configs/modules/denoiser.yaml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
denoiser:
|
| 2 |
+
target: mld.models.architectures.mld_denoiser.MldDenoiser
|
| 3 |
+
params:
|
| 4 |
+
text_encoded_dim: 768
|
| 5 |
+
ff_size: 1024
|
| 6 |
+
num_layers: 9
|
| 7 |
+
num_heads: 4
|
| 8 |
+
dropout: 0.1
|
| 9 |
+
normalize_before: False
|
| 10 |
+
activation: 'gelu'
|
| 11 |
+
flip_sin_to_cos: True
|
| 12 |
+
return_intermediate_dec: False
|
| 13 |
+
position_embedding: 'learned'
|
| 14 |
+
arch: trans_enc
|
| 15 |
+
freq_shift: 0
|
| 16 |
+
condition: ${model.condition}
|
| 17 |
+
latent_dim: ${model.latent_dim}
|
| 18 |
+
guidance_scale: ${model.guidance_scale}
|
| 19 |
+
guidance_uncondp: ${model.guidance_uncondp}
|
| 20 |
+
nfeats: ${DATASET.NFEATS}
|
| 21 |
+
nclasses: ${DATASET.NCLASSES}
|
| 22 |
+
ablation: ${TRAIN.ABLATION}
|
Evaluator_272/configs/modules/evaluators.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
t2m_textencoder:
|
| 2 |
+
target: mld.models.architectures.t2m_textenc.TextEncoderBiGRUCo
|
| 3 |
+
params:
|
| 4 |
+
word_size: 300
|
| 5 |
+
pos_size: 15
|
| 6 |
+
hidden_size: 512
|
| 7 |
+
output_size: 512
|
| 8 |
+
|
| 9 |
+
t2m_moveencoder:
|
| 10 |
+
target: mld.models.architectures.t2m_textenc.MovementConvEncoder
|
| 11 |
+
params:
|
| 12 |
+
hidden_size: 512
|
| 13 |
+
output_size: 512
|
| 14 |
+
|
| 15 |
+
t2m_motionencoder:
|
| 16 |
+
target: mld.models.architectures.t2m_motionenc.MotionEncoder
|
| 17 |
+
params:
|
| 18 |
+
input_size: ${model.t2m_moveencoder.output_size}
|
| 19 |
+
hidden_size: 1024
|
| 20 |
+
output_size: 512
|
Evaluator_272/configs/modules/motion_vae.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
motion_vae:
|
| 2 |
+
# Optional: mld_vae, vposert_vae
|
| 3 |
+
target: mld.models.architectures.mld_vae.MldVae
|
| 4 |
+
params:
|
| 5 |
+
arch: 'encoder_decoder'
|
| 6 |
+
ff_size: 1024
|
| 7 |
+
num_layers: 9
|
| 8 |
+
num_heads: 4
|
| 9 |
+
dropout: 0.1
|
| 10 |
+
normalize_before: false
|
| 11 |
+
activation: 'gelu'
|
| 12 |
+
position_embedding: 'learned'
|
| 13 |
+
latent_dim: ${model.latent_dim}
|
| 14 |
+
nfeats: ${DATASET.NFEATS}
|
| 15 |
+
ablation: ${TRAIN.ABLATION}
|
Evaluator_272/configs/modules/scheduler.yaml
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scheduler:
|
| 2 |
+
target: diffusers.DDIMScheduler
|
| 3 |
+
num_inference_timesteps: 50
|
| 4 |
+
eta: 0.0
|
| 5 |
+
params:
|
| 6 |
+
num_train_timesteps: 1000
|
| 7 |
+
beta_start: 0.00085
|
| 8 |
+
beta_end: 0.012
|
| 9 |
+
beta_schedule: 'scaled_linear' # Optional: ['linear', 'scaled_linear', 'squaredcos_cap_v2']
|
| 10 |
+
# variance_type: 'fixed_small'
|
| 11 |
+
clip_sample: false # clip sample to -1~1
|
| 12 |
+
# below are for ddim
|
| 13 |
+
set_alpha_to_one: false
|
| 14 |
+
steps_offset: 1
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
noise_scheduler:
|
| 18 |
+
target: diffusers.DDPMScheduler
|
| 19 |
+
params:
|
| 20 |
+
num_train_timesteps: 1000
|
| 21 |
+
beta_start: 0.00085
|
| 22 |
+
beta_end: 0.012
|
| 23 |
+
beta_schedule: 'scaled_linear' # Optional: ['linear', 'scaled_linear', 'squaredcos_cap_v2']
|
| 24 |
+
variance_type: 'fixed_small'
|
| 25 |
+
clip_sample: false # clip sample to -1~1
|
Evaluator_272/configs/modules/text_encoder.yaml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
text_encoder:
|
| 2 |
+
# Optional: mld_clip, mld_bert
|
| 3 |
+
target: mld.models.architectures.mld_clip.MldTextEncoder
|
| 4 |
+
params:
|
| 5 |
+
finetune: false # if false, model weights are frozen
|
| 6 |
+
last_hidden_state: false # if true, the last hidden state is used as the text embedding
|
| 7 |
+
latent_dim: ${model.latent_dim}
|
| 8 |
+
modelpath: ${model.clip_path}
|
Evaluator_272/configs/modules_temos/motiondecoder.yaml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
motiondecoder:
|
| 2 |
+
name: actor_decoder
|
| 3 |
+
target: mld.models.architectures.temos.motiondecoder.actor.ActorAgnosticDecoder
|
| 4 |
+
params:
|
| 5 |
+
latent_dim: ${model.latent_dim}
|
| 6 |
+
ff_size: ${model.ff_size}
|
| 7 |
+
num_layers: ${model.num_layers}
|
| 8 |
+
num_head: ${model.num_head}
|
| 9 |
+
droupout: ${model.dropout}
|
| 10 |
+
activation: ${model.activation}
|
| 11 |
+
nfeats: ${DATASET.NFEATS}
|
Evaluator_272/configs/modules_temos/motionencoder.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
motionencoder:
|
| 2 |
+
name: actor_encoder
|
| 3 |
+
target: mld.models.architectures.temos.motionencoder.actor.ActorAgnosticEncoder
|
| 4 |
+
params:
|
| 5 |
+
latent_dim: ${model.latent_dim}
|
| 6 |
+
vae: ${model.vae}
|
| 7 |
+
ff_size: ${model.ff_size}
|
| 8 |
+
num_layers: ${model.num_layers}
|
| 9 |
+
num_head: ${model.num_head}
|
| 10 |
+
droupout: ${model.dropout}
|
| 11 |
+
activation: ${model.activation}
|
| 12 |
+
nfeats: ${DATASET.NFEATS}
|
Evaluator_272/configs/modules_temos/text_encoder.yaml
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
textencoder:
|
| 2 |
+
name: distilbert_actor
|
| 3 |
+
target: mld.models.architectures.temos.textencoder.distillbert_actor.DistilbertActorAgnosticEncoder
|
| 4 |
+
params:
|
| 5 |
+
latent_dim: ${model.latent_dim}
|
| 6 |
+
vae: ${model.vae}
|
| 7 |
+
ff_size: ${model.ff_size}
|
| 8 |
+
num_layers: ${model.num_layers}
|
| 9 |
+
num_head: ${model.num_head}
|
| 10 |
+
droupout: ${model.dropout}
|
| 11 |
+
activation: ${model.activation}
|
| 12 |
+
finetune: false
|
| 13 |
+
modelpath: ${model.bert_path}
|
Evaluator_272/datasets/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/callback/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .progress import ProgressLogger
|
Evaluator_272/mld/callback/progress.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
from pytorch_lightning import LightningModule, Trainer
|
| 4 |
+
from pytorch_lightning.callbacks import Callback
|
| 5 |
+
import psutil
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ProgressLogger(Callback):
|
| 11 |
+
|
| 12 |
+
def __init__(self, metric_monitor: dict, precision: int = 3):
|
| 13 |
+
# Metric to monitor
|
| 14 |
+
self.metric_monitor = metric_monitor
|
| 15 |
+
self.precision = precision
|
| 16 |
+
|
| 17 |
+
def on_train_start(self, trainer: Trainer, pl_module: LightningModule,
|
| 18 |
+
**kwargs) -> None:
|
| 19 |
+
logger.info("Training started")
|
| 20 |
+
|
| 21 |
+
def on_train_end(self, trainer: Trainer, pl_module: LightningModule,
|
| 22 |
+
**kwargs) -> None:
|
| 23 |
+
logger.info("Training done")
|
| 24 |
+
|
| 25 |
+
def on_validation_epoch_end(self, trainer: Trainer,
|
| 26 |
+
pl_module: LightningModule, **kwargs) -> None:
|
| 27 |
+
if trainer.sanity_checking:
|
| 28 |
+
logger.info("Sanity checking ok.")
|
| 29 |
+
|
| 30 |
+
def on_train_epoch_end(self,
|
| 31 |
+
trainer: Trainer,
|
| 32 |
+
pl_module: LightningModule,
|
| 33 |
+
padding=False,
|
| 34 |
+
**kwargs) -> None:
|
| 35 |
+
metric_format = f"{{:.{self.precision}e}}"
|
| 36 |
+
line = f"Epoch {trainer.current_epoch}"
|
| 37 |
+
if padding:
|
| 38 |
+
line = f"{line:>{len('Epoch xxxx')}}" # Right padding
|
| 39 |
+
metrics_str = []
|
| 40 |
+
|
| 41 |
+
losses_dict = trainer.callback_metrics
|
| 42 |
+
for metric_name, dico_name in self.metric_monitor.items():
|
| 43 |
+
if dico_name in losses_dict:
|
| 44 |
+
metric = losses_dict[dico_name].item()
|
| 45 |
+
metric = metric_format.format(metric)
|
| 46 |
+
metric = f"{metric_name} {metric}"
|
| 47 |
+
metrics_str.append(metric)
|
| 48 |
+
|
| 49 |
+
if len(metrics_str) == 0:
|
| 50 |
+
return
|
| 51 |
+
|
| 52 |
+
memory = f"Memory {psutil.virtual_memory().percent}%"
|
| 53 |
+
line = line + ": " + " ".join(metrics_str) + " " + memory
|
| 54 |
+
logger.info(line)
|
Evaluator_272/mld/config.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
from argparse import ArgumentParser
|
| 3 |
+
from omegaconf import OmegaConf
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_module_config(cfg_model, path="modules"):
|
| 8 |
+
module_conf = OmegaConf.create()
|
| 9 |
+
files = os.listdir(f'./configs/{path}/')
|
| 10 |
+
for file in files:
|
| 11 |
+
if file.endswith('.yaml'):
|
| 12 |
+
with open(f'./configs/{path}/' + file, 'r') as f:
|
| 13 |
+
module_conf.merge_with(OmegaConf.load(f))
|
| 14 |
+
module_conf.merge_with(cfg_model)
|
| 15 |
+
return module_conf
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_obj_from_str(string, reload=False):
|
| 19 |
+
module, cls = string.rsplit(".", 1)
|
| 20 |
+
if reload:
|
| 21 |
+
module_imp = importlib.import_module(module)
|
| 22 |
+
importlib.reload(module_imp)
|
| 23 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def instantiate_from_config(config):
|
| 27 |
+
if not "target" in config:
|
| 28 |
+
if config == '__is_first_stage__':
|
| 29 |
+
return None
|
| 30 |
+
elif config == "__is_unconditional__":
|
| 31 |
+
return None
|
| 32 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 33 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def parse_args(phase="train"):
|
| 37 |
+
parser = ArgumentParser()
|
| 38 |
+
|
| 39 |
+
group = parser.add_argument_group("Training options")
|
| 40 |
+
if phase in ["train", "test"]:
|
| 41 |
+
group.add_argument(
|
| 42 |
+
"--cfg",
|
| 43 |
+
type=str,
|
| 44 |
+
required=False,
|
| 45 |
+
default="./configs/config.yaml",
|
| 46 |
+
help="config file",
|
| 47 |
+
)
|
| 48 |
+
group.add_argument(
|
| 49 |
+
"--cfg_assets",
|
| 50 |
+
type=str,
|
| 51 |
+
required=False,
|
| 52 |
+
default="./configs/assets.yaml",
|
| 53 |
+
help="config file for asset paths",
|
| 54 |
+
)
|
| 55 |
+
group.add_argument("--batch_size",
|
| 56 |
+
type=int,
|
| 57 |
+
required=False,
|
| 58 |
+
help="training batch size")
|
| 59 |
+
group.add_argument("--device",
|
| 60 |
+
type=int,
|
| 61 |
+
nargs="+",
|
| 62 |
+
required=False,
|
| 63 |
+
help="training device")
|
| 64 |
+
group.add_argument("--nodebug",
|
| 65 |
+
action="store_true",
|
| 66 |
+
required=False,
|
| 67 |
+
help="debug or not")
|
| 68 |
+
group.add_argument("--dir",
|
| 69 |
+
type=str,
|
| 70 |
+
required=False,
|
| 71 |
+
help="evaluate existing npys")
|
| 72 |
+
|
| 73 |
+
# remove None params, and create a dictionnary
|
| 74 |
+
params = parser.parse_args()
|
| 75 |
+
# params = {key: val for key, val in vars(opt).items() if val is not None}
|
| 76 |
+
|
| 77 |
+
# update config from files
|
| 78 |
+
cfg_base = OmegaConf.load('./configs/base.yaml')
|
| 79 |
+
cfg_exp = OmegaConf.merge(cfg_base, OmegaConf.load(params.cfg))
|
| 80 |
+
cfg_model = get_module_config(cfg_exp.model, cfg_exp.model.target)
|
| 81 |
+
cfg_exp.model = cfg_model
|
| 82 |
+
cfg_assets = OmegaConf.load(params.cfg_assets)
|
| 83 |
+
cfg = OmegaConf.merge(cfg_exp, cfg_model, cfg_assets)
|
| 84 |
+
|
| 85 |
+
if phase in ["train", "test"]:
|
| 86 |
+
cfg.TRAIN.BATCH_SIZE = (params.batch_size
|
| 87 |
+
if params.batch_size else cfg.TRAIN.BATCH_SIZE)
|
| 88 |
+
cfg.DEVICE = params.device if params.device else cfg.DEVICE
|
| 89 |
+
cfg.DEBUG = not params.nodebug if params.nodebug is not None else cfg.DEBUG
|
| 90 |
+
|
| 91 |
+
cfg.DEBUG = False if phase == "test" else cfg.DEBUG
|
| 92 |
+
if phase == "test":
|
| 93 |
+
cfg.DEBUG = False
|
| 94 |
+
cfg.DEVICE = [0]
|
| 95 |
+
print("Force no debugging and one gpu when testing")
|
| 96 |
+
cfg.TEST.TEST_DIR = params.dir if params.dir else cfg.TEST.TEST_DIR
|
| 97 |
+
|
| 98 |
+
# debug mode
|
| 99 |
+
if cfg.DEBUG:
|
| 100 |
+
cfg.NAME = "debug--" + cfg.NAME
|
| 101 |
+
cfg.LOGGER.WANDB.OFFLINE = True
|
| 102 |
+
cfg.LOGGER.VAL_EVERY_STEPS = 1
|
| 103 |
+
|
| 104 |
+
return cfg
|
Evaluator_272/mld/data/HumanML3D_272.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from mld.data.humanml.scripts.motion_process import (process_file,
|
| 5 |
+
recover_from_ric, recover_from_root_rot6d)
|
| 6 |
+
|
| 7 |
+
from .base import BASEDataModule
|
| 8 |
+
from .humanml.data.dataset import Text2MotionDatasetV2
|
| 9 |
+
from .humanml.common.skeleton import Skeleton
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class HumanML3D_272_DataModule(BASEDataModule):
|
| 14 |
+
|
| 15 |
+
def __init__(self,
|
| 16 |
+
cfg,
|
| 17 |
+
batch_size,
|
| 18 |
+
num_workers,
|
| 19 |
+
collate_fn=None,
|
| 20 |
+
phase="train",
|
| 21 |
+
**kwargs):
|
| 22 |
+
super().__init__(batch_size=batch_size,
|
| 23 |
+
num_workers=num_workers,
|
| 24 |
+
collate_fn=collate_fn)
|
| 25 |
+
|
| 26 |
+
self.save_hyperparameters(logger=False)
|
| 27 |
+
self.name = "humanml3d_272"
|
| 28 |
+
self.njoints = 22
|
| 29 |
+
self.hparams['njoints']=22
|
| 30 |
+
if phase == "text_only":
|
| 31 |
+
self.Dataset = TextOnlyDataset
|
| 32 |
+
else:
|
| 33 |
+
if cfg.TRAIN.STAGE in ['gpt'] and (not cfg.TEST.inference_vq_code):
|
| 34 |
+
if cfg.model.vae_type in ['humanvq']:
|
| 35 |
+
self.Dataset = Text2MotionDatasetV2_VQToken
|
| 36 |
+
elif cfg.model.vae_type in ['hvq']:
|
| 37 |
+
self.Dataset = Text2MotionDatasetV2_Dual_codebook_VQToken
|
| 38 |
+
else:
|
| 39 |
+
raise NotImplementedError
|
| 40 |
+
elif cfg.TEST.inference_vq_code:
|
| 41 |
+
self.Dataset = VQMotionDataset
|
| 42 |
+
else:
|
| 43 |
+
self.Dataset = Text2MotionDatasetV2
|
| 44 |
+
self.cfg = cfg
|
| 45 |
+
sample_overrides = {
|
| 46 |
+
"split": "val",
|
| 47 |
+
"tiny": True,
|
| 48 |
+
"progress_bar": False
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
self._sample_set = self.get_sample_set(overrides=sample_overrides)
|
| 52 |
+
|
| 53 |
+
self.nfeats = self._sample_set.nfeats
|
| 54 |
+
|
| 55 |
+
def recover_from_local_position(self, final_x, njoint):
|
| 56 |
+
|
| 57 |
+
def accumulate_rotations(relative_rotations):
|
| 58 |
+
R_total = [relative_rotations[0]]
|
| 59 |
+
for R_rel in relative_rotations[1:]:
|
| 60 |
+
R_total.append(np.matmul(R_rel, R_total[-1]))
|
| 61 |
+
|
| 62 |
+
return np.array(R_total)
|
| 63 |
+
|
| 64 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
| 65 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
| 66 |
+
b1 = F.normalize(a1, dim=-1)
|
| 67 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
| 68 |
+
b2 = F.normalize(b2, dim=-1)
|
| 69 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
| 70 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
| 71 |
+
|
| 72 |
+
nfrm, _ = final_x.shape
|
| 73 |
+
positions_no_heading = final_x[:,8:8+3*njoint].reshape(nfrm, -1, 3)
|
| 74 |
+
velocities_root_xy_no_heading = final_x[:,:2]
|
| 75 |
+
global_heading_diff_rot = final_x[:,2:8]
|
| 76 |
+
|
| 77 |
+
global_heading_rot = accumulate_rotations(rotation_6d_to_matrix(torch.from_numpy(global_heading_diff_rot)).numpy())
|
| 78 |
+
inv_global_heading_rot = np.transpose(global_heading_rot, (0, 2, 1))
|
| 79 |
+
positions_with_heading = np.matmul(np.repeat(inv_global_heading_rot[:, None,:, :], njoint, axis=1), positions_no_heading[...,None]).squeeze(-1)
|
| 80 |
+
velocities_root_xyz_no_heading = np.zeros((velocities_root_xy_no_heading.shape[0], 3))
|
| 81 |
+
velocities_root_xyz_no_heading[:, 0] = velocities_root_xy_no_heading[:, 0]
|
| 82 |
+
velocities_root_xyz_no_heading[:, 2] = velocities_root_xy_no_heading[:, 1]
|
| 83 |
+
velocities_root_xyz_no_heading[1:, :] = np.matmul(inv_global_heading_rot[:-1], velocities_root_xyz_no_heading[1:, :,None]).squeeze(-1)
|
| 84 |
+
|
| 85 |
+
root_translation = np.cumsum(velocities_root_xyz_no_heading, axis=0)
|
| 86 |
+
positions_with_heading[:, :, 0] += root_translation[:, 0:1]
|
| 87 |
+
positions_with_heading[:, :, 2] += root_translation[:, 2:]
|
| 88 |
+
|
| 89 |
+
return positions_with_heading
|
| 90 |
+
|
| 91 |
+
def feats2joints(self, features, skel=None, motion_type=''):
|
| 92 |
+
assert motion_type in ['']
|
| 93 |
+
assert features.shape[2] == 272
|
| 94 |
+
mean = torch.tensor(self.hparams.mean).to(features)
|
| 95 |
+
std = torch.tensor(self.hparams.std).to(features)
|
| 96 |
+
features = features * std + mean
|
| 97 |
+
return self.recover_from_local_position(features.reshape(-1, 272).detach().cpu().numpy(), self.njoints).reshape(features.shape[0], -1, 22, 3)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def joints2feats(self, features):
|
| 101 |
+
features = process_file(features, self.njoints)[0]
|
| 102 |
+
return features
|
| 103 |
+
|
| 104 |
+
def renorm4t2m(self, features):
|
| 105 |
+
ori_mean = torch.tensor(self.hparams.mean).to(features)
|
| 106 |
+
ori_std = torch.tensor(self.hparams.std).to(features)
|
| 107 |
+
eval_mean = torch.tensor(self.hparams.mean_eval).to(features)
|
| 108 |
+
eval_std = torch.tensor(self.hparams.std_eval).to(features)
|
| 109 |
+
features = features * ori_std + ori_mean
|
| 110 |
+
features = (features - eval_mean) / eval_std
|
| 111 |
+
return features
|
| 112 |
+
|
| 113 |
+
def renorm2ori(self, features):
|
| 114 |
+
mean = torch.tensor(self.hparams.mean).to(features)
|
| 115 |
+
std = torch.tensor(self.hparams.std).to(features)
|
| 116 |
+
features = features * std + mean
|
| 117 |
+
|
| 118 |
+
return features
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def mm_mode(self, mm_on=True):
|
| 122 |
+
if mm_on:
|
| 123 |
+
self.is_mm = True
|
| 124 |
+
self.name_list = self.test_dataset.name_list
|
| 125 |
+
self.mm_list = np.random.choice(self.name_list,
|
| 126 |
+
self.cfg.TEST.MM_NUM_SAMPLES,
|
| 127 |
+
replace=False)
|
| 128 |
+
self.test_dataset.name_list = self.mm_list
|
| 129 |
+
else:
|
| 130 |
+
self.is_mm = False
|
| 131 |
+
self.test_dataset.name_list = self.name_list
|
Evaluator_272/mld/data/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/data/base.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from os.path import join as pjoin
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pytorch_lightning as pl
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BASEDataModule(pl.LightningDataModule):
|
| 8 |
+
|
| 9 |
+
def __init__(self, collate_fn, batch_size: int, num_workers: int):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
self.dataloader_options = {
|
| 13 |
+
"batch_size": batch_size,
|
| 14 |
+
"num_workers": num_workers,
|
| 15 |
+
"collate_fn": collate_fn,
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
self.persistent_workers = True
|
| 19 |
+
self.is_mm = False
|
| 20 |
+
|
| 21 |
+
def get_sample_set(self, overrides={}):
|
| 22 |
+
sample_params = self.hparams.copy()
|
| 23 |
+
sample_params.update(overrides)
|
| 24 |
+
split_file = pjoin(
|
| 25 |
+
eval(f"self.cfg.DATASET.{self.name.upper()}.SPLIT_ROOT"), self.cfg.DATASET.VERSION,
|
| 26 |
+
self.cfg.EVAL.SPLIT + ".txt",
|
| 27 |
+
)
|
| 28 |
+
return self.Dataset(split_file=split_file, **sample_params)
|
| 29 |
+
|
| 30 |
+
def __getattr__(self, item):
|
| 31 |
+
# train_dataset/val_dataset etc cached like properties
|
| 32 |
+
if item.endswith("_dataset") and not item.startswith("_"):
|
| 33 |
+
subset = item[:-len("_dataset")]
|
| 34 |
+
item_c = "_" + item
|
| 35 |
+
if item_c not in self.__dict__:
|
| 36 |
+
# todo: config name not consistent
|
| 37 |
+
subset = subset.upper() if subset != "val" else "EVAL"
|
| 38 |
+
split = eval(f"self.cfg.{subset}.SPLIT")
|
| 39 |
+
split_file = pjoin(
|
| 40 |
+
eval(f"self.cfg.DATASET.{self.name.upper()}.SPLIT_ROOT"),
|
| 41 |
+
self.cfg.DATASET.VERSION,
|
| 42 |
+
eval(f"self.cfg.{subset}.SPLIT") + ".txt",
|
| 43 |
+
)
|
| 44 |
+
self.__dict__[item_c] = self.Dataset(split_file=split_file,
|
| 45 |
+
split=split,
|
| 46 |
+
**self.hparams)
|
| 47 |
+
return getattr(self, item_c)
|
| 48 |
+
classname = self.__class__.__name__
|
| 49 |
+
raise AttributeError(f"'{classname}' object has no attribute '{item}'")
|
| 50 |
+
|
| 51 |
+
def setup(self, stage=None):
|
| 52 |
+
self.stage = stage
|
| 53 |
+
# Use the getter the first time to load the data
|
| 54 |
+
if stage in (None, "fit"):
|
| 55 |
+
_ = self.train_dataset
|
| 56 |
+
_ = self.val_dataset
|
| 57 |
+
if stage in (None, "test"):
|
| 58 |
+
_ = self.test_dataset
|
| 59 |
+
|
| 60 |
+
def train_dataloader(self):
|
| 61 |
+
return DataLoader(
|
| 62 |
+
self.train_dataset,
|
| 63 |
+
shuffle=True,
|
| 64 |
+
persistent_workers=True,
|
| 65 |
+
**self.dataloader_options,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def predict_dataloader(self):
|
| 69 |
+
dataloader_options = self.dataloader_options.copy()
|
| 70 |
+
dataloader_options[
|
| 71 |
+
"batch_size"] = 1 if self.is_mm else self.cfg.TEST.BATCH_SIZE
|
| 72 |
+
dataloader_options["num_workers"] = self.cfg.TEST.NUM_WORKERS
|
| 73 |
+
dataloader_options["shuffle"] = False
|
| 74 |
+
return DataLoader(
|
| 75 |
+
self.test_dataset,
|
| 76 |
+
persistent_workers=True,
|
| 77 |
+
**dataloader_options,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
def val_dataloader(self):
|
| 81 |
+
# overrides batch_size and num_workers
|
| 82 |
+
dataloader_options = self.dataloader_options.copy()
|
| 83 |
+
dataloader_options["batch_size"] = self.cfg.EVAL.BATCH_SIZE
|
| 84 |
+
dataloader_options["num_workers"] = self.cfg.EVAL.NUM_WORKERS
|
| 85 |
+
dataloader_options["shuffle"] = False
|
| 86 |
+
|
| 87 |
+
return DataLoader(
|
| 88 |
+
self.val_dataset,
|
| 89 |
+
persistent_workers=True,
|
| 90 |
+
**dataloader_options,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
def test_dataloader(self):
|
| 94 |
+
# overrides batch_size and num_workers
|
| 95 |
+
dataloader_options = self.dataloader_options.copy()
|
| 96 |
+
dataloader_options[
|
| 97 |
+
"batch_size"] = 1 if self.is_mm else self.cfg.TEST.BATCH_SIZE
|
| 98 |
+
dataloader_options["num_workers"] = self.cfg.TEST.NUM_WORKERS
|
| 99 |
+
# dataloader_options["drop_last"] = True
|
| 100 |
+
dataloader_options["shuffle"] = False
|
| 101 |
+
return DataLoader(
|
| 102 |
+
self.test_dataset,
|
| 103 |
+
persistent_workers=True,
|
| 104 |
+
**dataloader_options,
|
| 105 |
+
)
|
Evaluator_272/mld/data/get_data.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from os.path import join as pjoin
|
| 2 |
+
import numpy as np
|
| 3 |
+
# from .humanml.utils.word_vectorizer import WordVectorizer, WordVectorizer_only_text_token
|
| 4 |
+
from .utils import *
|
| 5 |
+
from .HumanML3D_272 import HumanML3D_272_DataModule
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_mean_std(phase, cfg, dataset_name):
|
| 9 |
+
assert dataset_name == 'humanml3d_272'
|
| 10 |
+
|
| 11 |
+
data_root = eval(f"cfg.DATASET.{dataset_name.upper()}.ROOT")
|
| 12 |
+
mean = np.load(pjoin(data_root, 'mean_std', cfg.DATASET.VERSION, cfg.DATASET.MOTION_TYPE, "Mean.npy"))
|
| 13 |
+
std = np.load(pjoin(data_root, 'mean_std', cfg.DATASET.VERSION, cfg.DATASET.MOTION_TYPE, "Std.npy"))
|
| 14 |
+
return mean, std
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_njoints(dataset_name):
|
| 19 |
+
njoints = 22
|
| 20 |
+
return njoints
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def reget_mean_std(cfg, dataset_name, mean, std):
|
| 24 |
+
if 'MINOR_MOTION_TYPE' in cfg.DATASET:
|
| 25 |
+
select_motion_type = cfg.DATASET.MINOR_MOTION_TYPE
|
| 26 |
+
else:
|
| 27 |
+
select_motion_type = cfg.DATASET.MOTION_TYPE
|
| 28 |
+
|
| 29 |
+
njoints = get_njoints(dataset_name)
|
| 30 |
+
if select_motion_type == 'root_position':
|
| 31 |
+
mean = mean[..., :4+(njoints - 1) * 3]
|
| 32 |
+
elif select_motion_type == 'root_position_vel':
|
| 33 |
+
mean = np.concatenate((mean[..., :4+(njoints - 1) * 3], mean[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=0)
|
| 34 |
+
elif select_motion_type == 'root_position_rot6d':
|
| 35 |
+
mean = np.concatenate((mean[..., :4+(njoints - 1) * 3], mean[..., 4+(njoints - 1) * 3: 4+(njoints - 1) * 9]), axis=0)
|
| 36 |
+
elif select_motion_type == 'root_rot6d':
|
| 37 |
+
mean = np.concatenate((mean[..., :4], mean[..., 4+(njoints - 1) * 3: 4+(njoints - 1) * 9]), axis=0)
|
| 38 |
+
elif select_motion_type in ['all', 'smplx_212', 'vector_263', 'vector_263_ori_humanml', 'smplx_159', '']:
|
| 39 |
+
pass
|
| 40 |
+
elif select_motion_type == 'root_body_pos_vel_hand_all':
|
| 41 |
+
mean = np.concatenate((mean[..., :4+(njoints - 1) * 3], mean[..., 4+(njoints - 1) * 3 + 21 * 6 : 4+(njoints - 1) * 9], mean[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=0)
|
| 42 |
+
# pass
|
| 43 |
+
elif select_motion_type == 'root_body_pos_vel_hand_pos_vel':
|
| 44 |
+
mean = np.concatenate((mean[..., :4+(njoints - 1) * 3], mean[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=0)
|
| 45 |
+
elif select_motion_type == 'root_body_pos_vel_hand_pos':
|
| 46 |
+
mean = np.concatenate((mean[..., :4+(njoints - 1) * 3], mean[..., 4+(njoints - 1) * 9 + 22 * 3: 4+(njoints - 1) * 9 + 52*3]), axis=0)
|
| 47 |
+
elif select_motion_type == 'root_body_pos_vel_hand_rot':
|
| 48 |
+
mean = np.concatenate((mean[..., :4+(22 - 1) * 3], mean[..., 4+(52 - 1) * 3 + (22-1)*6 : 4+(52-1)*9], mean[..., 4+(52 - 1) * 9: 4+(52 - 1) * 9 + 22*3]), axis=0)
|
| 49 |
+
elif select_motion_type == 'root_position_vel_only_body':
|
| 50 |
+
mean = np.concatenate((mean[..., :4+(22 - 1) * 3], mean[..., 4+(52 - 1) * 9: 4+(52 - 1) * 9 + 22*3]), axis=0)
|
| 51 |
+
elif select_motion_type == 'root_body_pos_vel_hand_pos_vel_hand_wrist':
|
| 52 |
+
body_pos_mean = mean[..., :4+(22 - 1) * 3] # 67
|
| 53 |
+
left_hand_pos_mean = (mean[..., 4+(22 - 1) * 3:4+(37 - 1) * 3].reshape(15, 3) - body_pos_mean[..., -6:-3]).reshape(-1) # 45
|
| 54 |
+
right_hand_pos_mean = (mean[..., 4+(37 - 1) * 3:4+(52 - 1) * 3].reshape(15, 3) - body_pos_mean[..., -3:]).reshape(-1) # 45
|
| 55 |
+
|
| 56 |
+
body_vel_mean = mean[..., 4+(52 - 1) * 9: 4+(52 - 1) * 9 + 22*3] # 66
|
| 57 |
+
left_hand_vel_mean = (mean[..., 4+(52 - 1) * 9 + 22*3: 4+(52 - 1) * 9 + 22*3 + 15 * 3].reshape(15, 3) - body_vel_mean[..., -6:-3]).reshape(-1)
|
| 58 |
+
right_hand_vel_mean = (mean[..., 4+(52 - 1) * 9 + 22*3+ 15 * 3: 4+(52 - 1) * 9 + 22*3 + 15 * 3 + 15 * 3].reshape(15, 3) - body_vel_mean[..., -3:]).reshape(-1)
|
| 59 |
+
|
| 60 |
+
mean = np.concatenate((body_pos_mean, left_hand_pos_mean, right_hand_pos_mean, body_vel_mean, left_hand_vel_mean, right_hand_vel_mean), axis=0)
|
| 61 |
+
else:
|
| 62 |
+
raise NotImplementedError
|
| 63 |
+
|
| 64 |
+
if select_motion_type == 'root_position':
|
| 65 |
+
std = std[..., :4+(njoints-1)*3]
|
| 66 |
+
elif select_motion_type == 'root_position_vel':
|
| 67 |
+
std = np.concatenate((std[..., :4+(njoints - 1) * 3], std[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=0)
|
| 68 |
+
elif select_motion_type == 'root_position_rot6d':
|
| 69 |
+
std = np.concatenate((std[..., :4+(njoints - 1) * 3], std[..., 4+(njoints - 1) * 3: 4+(njoints - 1) * 9]), axis=0)
|
| 70 |
+
elif select_motion_type == 'root_rot6d':
|
| 71 |
+
std = np.concatenate((std[..., :4], std[..., 4+(njoints - 1) * 3: 4+(njoints - 1) * 9]), axis=0)
|
| 72 |
+
elif select_motion_type in ['all', 'smplx_212', 'vector_263', 'vector_263_ori_humanml', 'smplx_159', '']:
|
| 73 |
+
pass
|
| 74 |
+
elif select_motion_type == 'root_body_pos_vel_hand_all':
|
| 75 |
+
std = np.concatenate((std[..., :4+(njoints - 1) * 3], std[..., 4+(njoints - 1) * 3 + 21 * 6 : 4+(njoints - 1) * 9], std[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=0)
|
| 76 |
+
# pass
|
| 77 |
+
elif select_motion_type == 'root_body_pos_vel_hand_pos_vel':
|
| 78 |
+
std = np.concatenate((std[..., :4+(njoints - 1) * 3], std[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=0)
|
| 79 |
+
elif select_motion_type == 'root_body_pos_vel_hand_pos':
|
| 80 |
+
std = np.concatenate((std[..., :4+(njoints - 1) * 3], std[..., 4+(njoints - 1) * 9 + 22 * 3: 4+(njoints - 1) * 9 + 52*3]), axis=0)
|
| 81 |
+
elif select_motion_type == 'root_body_pos_vel_hand_rot':
|
| 82 |
+
std = np.concatenate((std[..., :4+(22 - 1) * 3], std[..., 4+(52 - 1) * 3 + (22-1)*6 : 4+(52-1)*9], std[..., 4+(52 - 1) * 9: 4+(52 - 1) * 9 + 22*3]), axis=0)
|
| 83 |
+
elif select_motion_type == 'root_position_vel_only_body':
|
| 84 |
+
std = np.concatenate((std[..., :4+(22 - 1) * 3], std[..., 4+(52 - 1) * 9: 4+(52 - 1) * 9 + 22*3]), axis=0)
|
| 85 |
+
elif select_motion_type == 'root_body_pos_vel_hand_pos_vel_hand_wrist':
|
| 86 |
+
std = np.concatenate((std[..., :4+(njoints - 1) * 3], std[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=0)
|
| 87 |
+
else:
|
| 88 |
+
raise NotImplementedError
|
| 89 |
+
|
| 90 |
+
return mean, std
|
| 91 |
+
|
| 92 |
+
# def get_WordVectorizer(cfg, phase, dataset_name):
|
| 93 |
+
# if phase not in ["text_only"]:
|
| 94 |
+
# if dataset_name.lower() in ['humanml3d_272']:
|
| 95 |
+
# if cfg.model.eval_text_source == 'token':
|
| 96 |
+
# return WordVectorizer(cfg.DATASET.WORD_VERTILIZER_PATH, "our_vab", cfg.model.eval_text_encode_way)
|
| 97 |
+
# else:
|
| 98 |
+
# return WordVectorizer_only_text_token(cfg.DATASET.WORD_VERTILIZER_PATH, "our_vab", cfg.model.eval_text_encode_way)
|
| 99 |
+
# else:
|
| 100 |
+
# raise ValueError("Only support WordVectorizer for HumanML3D_272")
|
| 101 |
+
# else:
|
| 102 |
+
# return None
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def get_collate_fn(name, cfg, phase="train"):
|
| 106 |
+
if name.lower() in ['humanml3d_272']:
|
| 107 |
+
if cfg.model.condition in ['text_all', 'text_face', 'text_body', 'text_hand', 'text_face_body', 'text_seperate', 'only_pose_concat', 'only_pose_fusion'] and (not cfg.TEST.inference_vq_code):
|
| 108 |
+
return mld_collate_text_all
|
| 109 |
+
elif cfg.TEST.inference_vq_code:
|
| 110 |
+
return vq_collate
|
| 111 |
+
elif cfg.TRAIN.STAGE in ['gpt'] and (not cfg.TEST.inference_vq_code):
|
| 112 |
+
return mld_collate_vq_token
|
| 113 |
+
else:
|
| 114 |
+
return mld_collate
|
| 115 |
+
else:
|
| 116 |
+
raise NotImplementedError
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# map config name to module&path
|
| 120 |
+
dataset_module_map = {
|
| 121 |
+
'humanml3d_272': HumanML3D_272_DataModule
|
| 122 |
+
}
|
| 123 |
+
motion_subdir = {'humanml3d_272': 'motion_data'}
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def get_datasets(cfg, logger=None, phase="train"):
|
| 127 |
+
# get dataset names form cfg
|
| 128 |
+
dataset_names = eval(f"cfg.{phase.upper()}.DATASETS")
|
| 129 |
+
datasets = []
|
| 130 |
+
for dataset_name in dataset_names:
|
| 131 |
+
if dataset_name.lower() in ["humanml3d_272"]:
|
| 132 |
+
|
| 133 |
+
if 'MINOR_MOTION_TYPE' in cfg.DATASET:
|
| 134 |
+
input_format = cfg.DATASET.MINOR_MOTION_TYPE
|
| 135 |
+
else:
|
| 136 |
+
input_format = cfg.DATASET.MOTION_TYPE
|
| 137 |
+
|
| 138 |
+
data_root = eval(f"cfg.DATASET.{dataset_name.upper()}.ROOT")
|
| 139 |
+
# get mean and std corresponding to dataset
|
| 140 |
+
mean, std = get_mean_std(phase, cfg, dataset_name)
|
| 141 |
+
mean_eval, std_eval = get_mean_std("val", cfg, dataset_name)
|
| 142 |
+
|
| 143 |
+
mean, std = reget_mean_std(cfg, dataset_name, mean, std)
|
| 144 |
+
mean_eval, std_eval = reget_mean_std(cfg, dataset_name, mean_eval, std_eval)
|
| 145 |
+
|
| 146 |
+
# get WordVectorizer
|
| 147 |
+
# wordVectorizer = get_WordVectorizer(cfg, phase, dataset_name)
|
| 148 |
+
# get collect_fn
|
| 149 |
+
collate_fn = get_collate_fn(dataset_name, cfg, phase)
|
| 150 |
+
# get dataset module
|
| 151 |
+
|
| 152 |
+
dataset = dataset_module_map[dataset_name.lower()](
|
| 153 |
+
cfg=cfg,
|
| 154 |
+
batch_size=cfg.TRAIN.BATCH_SIZE,
|
| 155 |
+
num_workers=cfg.TRAIN.NUM_WORKERS,
|
| 156 |
+
debug=cfg.DEBUG,
|
| 157 |
+
collate_fn=collate_fn,
|
| 158 |
+
mean=mean,
|
| 159 |
+
std=std,
|
| 160 |
+
mean_eval=mean_eval,
|
| 161 |
+
std_eval=std_eval,
|
| 162 |
+
# w_vectorizer=wordVectorizer,
|
| 163 |
+
input_format=cfg.DATASET.MOTION_TYPE,
|
| 164 |
+
text_dir=pjoin(data_root, "texts"),
|
| 165 |
+
motion_dir=pjoin(data_root, motion_subdir[dataset_name]),
|
| 166 |
+
max_motion_length=cfg.DATASET.SAMPLER.MAX_LEN,
|
| 167 |
+
min_motion_length=cfg.DATASET.SAMPLER.MIN_LEN,
|
| 168 |
+
max_text_len=cfg.DATASET.SAMPLER.MAX_TEXT_LEN,
|
| 169 |
+
unit_length=eval(
|
| 170 |
+
f"cfg.DATASET.{dataset_name.upper()}.UNIT_LEN"),
|
| 171 |
+
)
|
| 172 |
+
datasets.append(dataset)
|
| 173 |
+
|
| 174 |
+
else:
|
| 175 |
+
raise NotImplementedError
|
| 176 |
+
|
| 177 |
+
if input_format == 'root_body_pos_vel_hand_pos_vel':
|
| 178 |
+
cfg.DATASET.NFEATS = 313
|
| 179 |
+
else:
|
| 180 |
+
cfg.DATASET.NFEATS = datasets[0].nfeats
|
| 181 |
+
|
| 182 |
+
cfg.DATASET.NJOINTS = datasets[0].njoints
|
| 183 |
+
return datasets
|
Evaluator_272/mld/data/humanml/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/data/humanml/common/quaternion.py
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2018-present, Facebook, Inc.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
#
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
_EPS4 = np.finfo(float).eps * 4.0
|
| 12 |
+
|
| 13 |
+
_FLOAT_EPS = np.finfo(np.float64).eps
|
| 14 |
+
|
| 15 |
+
# PyTorch-backed implementations
|
| 16 |
+
def qinv(q):
|
| 17 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
| 18 |
+
mask = torch.ones_like(q)
|
| 19 |
+
mask[..., 1:] = -mask[..., 1:]
|
| 20 |
+
return q * mask
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def qinv_np(q):
|
| 24 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
| 25 |
+
return qinv(torch.from_numpy(q).float()).numpy()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def qnormalize(q):
|
| 29 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
| 30 |
+
return q / torch.norm(q, dim=-1, keepdim=True)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def qmul(q, r):
|
| 34 |
+
"""
|
| 35 |
+
Multiply quaternion(s) q with quaternion(s) r.
|
| 36 |
+
Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions.
|
| 37 |
+
Returns q*r as a tensor of shape (*, 4).
|
| 38 |
+
"""
|
| 39 |
+
assert q.shape[-1] == 4
|
| 40 |
+
assert r.shape[-1] == 4
|
| 41 |
+
|
| 42 |
+
original_shape = q.shape
|
| 43 |
+
|
| 44 |
+
# Compute outer product
|
| 45 |
+
terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4))
|
| 46 |
+
|
| 47 |
+
w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3]
|
| 48 |
+
x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2]
|
| 49 |
+
y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1]
|
| 50 |
+
z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0]
|
| 51 |
+
return torch.stack((w, x, y, z), dim=1).view(original_shape)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def qrot(q, v):
|
| 55 |
+
"""
|
| 56 |
+
Rotate vector(s) v about the rotation described by quaternion(s) q.
|
| 57 |
+
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
|
| 58 |
+
where * denotes any number of dimensions.
|
| 59 |
+
Returns a tensor of shape (*, 3).
|
| 60 |
+
"""
|
| 61 |
+
assert q.shape[-1] == 4
|
| 62 |
+
assert v.shape[-1] == 3
|
| 63 |
+
assert q.shape[:-1] == v.shape[:-1]
|
| 64 |
+
|
| 65 |
+
original_shape = list(v.shape)
|
| 66 |
+
# print(q.shape)
|
| 67 |
+
q = q.contiguous().view(-1, 4)
|
| 68 |
+
v = v.contiguous().view(-1, 3)
|
| 69 |
+
|
| 70 |
+
qvec = q[:, 1:]
|
| 71 |
+
uv = torch.cross(qvec, v, dim=1)
|
| 72 |
+
uuv = torch.cross(qvec, uv, dim=1)
|
| 73 |
+
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def qeuler(q, order, epsilon=0, deg=True):
|
| 77 |
+
"""
|
| 78 |
+
Convert quaternion(s) q to Euler angles.
|
| 79 |
+
Expects a tensor of shape (*, 4), where * denotes any number of dimensions.
|
| 80 |
+
Returns a tensor of shape (*, 3).
|
| 81 |
+
"""
|
| 82 |
+
assert q.shape[-1] == 4
|
| 83 |
+
|
| 84 |
+
original_shape = list(q.shape)
|
| 85 |
+
original_shape[-1] = 3
|
| 86 |
+
q = q.view(-1, 4)
|
| 87 |
+
|
| 88 |
+
q0 = q[:, 0]
|
| 89 |
+
q1 = q[:, 1]
|
| 90 |
+
q2 = q[:, 2]
|
| 91 |
+
q3 = q[:, 3]
|
| 92 |
+
|
| 93 |
+
if order == 'xyz':
|
| 94 |
+
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
| 95 |
+
y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon))
|
| 96 |
+
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
|
| 97 |
+
elif order == 'yzx':
|
| 98 |
+
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
| 99 |
+
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
|
| 100 |
+
z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon))
|
| 101 |
+
elif order == 'zxy':
|
| 102 |
+
x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon))
|
| 103 |
+
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
| 104 |
+
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3))
|
| 105 |
+
elif order == 'xzy':
|
| 106 |
+
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
| 107 |
+
y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
|
| 108 |
+
z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon))
|
| 109 |
+
elif order == 'yxz':
|
| 110 |
+
x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon))
|
| 111 |
+
y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2))
|
| 112 |
+
z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
| 113 |
+
elif order == 'zyx':
|
| 114 |
+
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
| 115 |
+
y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon))
|
| 116 |
+
z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
|
| 117 |
+
else:
|
| 118 |
+
raise
|
| 119 |
+
|
| 120 |
+
if deg:
|
| 121 |
+
return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi
|
| 122 |
+
else:
|
| 123 |
+
return torch.stack((x, y, z), dim=1).view(original_shape)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# Numpy-backed implementations
|
| 127 |
+
|
| 128 |
+
def qmul_np(q, r):
|
| 129 |
+
q = torch.from_numpy(q).contiguous().float()
|
| 130 |
+
r = torch.from_numpy(r).contiguous().float()
|
| 131 |
+
return qmul(q, r).numpy()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def qrot_np(q, v):
|
| 135 |
+
q = torch.from_numpy(q).contiguous().float()
|
| 136 |
+
v = torch.from_numpy(v).contiguous().float()
|
| 137 |
+
return qrot(q, v).numpy()
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def qeuler_np(q, order, epsilon=0, use_gpu=False):
|
| 141 |
+
if use_gpu:
|
| 142 |
+
q = torch.from_numpy(q).cuda().float()
|
| 143 |
+
return qeuler(q, order, epsilon).cpu().numpy()
|
| 144 |
+
else:
|
| 145 |
+
q = torch.from_numpy(q).contiguous().float()
|
| 146 |
+
return qeuler(q, order, epsilon).numpy()
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def qfix(q):
|
| 150 |
+
"""
|
| 151 |
+
Enforce quaternion continuity across the time dimension by selecting
|
| 152 |
+
the representation (q or -q) with minimal distance (or, equivalently, maximal dot product)
|
| 153 |
+
between two consecutive frames.
|
| 154 |
+
|
| 155 |
+
Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints.
|
| 156 |
+
Returns a tensor of the same shape.
|
| 157 |
+
"""
|
| 158 |
+
assert len(q.shape) == 3
|
| 159 |
+
assert q.shape[-1] == 4
|
| 160 |
+
|
| 161 |
+
result = q.copy()
|
| 162 |
+
dot_products = np.sum(q[1:] * q[:-1], axis=2)
|
| 163 |
+
mask = dot_products < 0
|
| 164 |
+
mask = (np.cumsum(mask, axis=0) % 2).astype(bool)
|
| 165 |
+
result[1:][mask] *= -1
|
| 166 |
+
return result
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def euler2quat(e, order, deg=True):
|
| 170 |
+
"""
|
| 171 |
+
Convert Euler angles to quaternions.
|
| 172 |
+
"""
|
| 173 |
+
assert e.shape[-1] == 3
|
| 174 |
+
|
| 175 |
+
original_shape = list(e.shape)
|
| 176 |
+
original_shape[-1] = 4
|
| 177 |
+
|
| 178 |
+
e = e.view(-1, 3)
|
| 179 |
+
|
| 180 |
+
## if euler angles in degrees
|
| 181 |
+
if deg:
|
| 182 |
+
e = e * np.pi / 180.
|
| 183 |
+
|
| 184 |
+
x = e[:, 0]
|
| 185 |
+
y = e[:, 1]
|
| 186 |
+
z = e[:, 2]
|
| 187 |
+
|
| 188 |
+
rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1)
|
| 189 |
+
ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1)
|
| 190 |
+
rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1)
|
| 191 |
+
|
| 192 |
+
result = None
|
| 193 |
+
for coord in order:
|
| 194 |
+
if coord == 'x':
|
| 195 |
+
r = rx
|
| 196 |
+
elif coord == 'y':
|
| 197 |
+
r = ry
|
| 198 |
+
elif coord == 'z':
|
| 199 |
+
r = rz
|
| 200 |
+
else:
|
| 201 |
+
raise
|
| 202 |
+
if result is None:
|
| 203 |
+
result = r
|
| 204 |
+
else:
|
| 205 |
+
result = qmul(result, r)
|
| 206 |
+
|
| 207 |
+
# Reverse antipodal representation to have a non-negative "w"
|
| 208 |
+
if order in ['xyz', 'yzx', 'zxy']:
|
| 209 |
+
result *= -1
|
| 210 |
+
|
| 211 |
+
return result.view(original_shape)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def expmap_to_quaternion(e):
|
| 215 |
+
"""
|
| 216 |
+
Convert axis-angle rotations (aka exponential maps) to quaternions.
|
| 217 |
+
Stable formula from "Practical Parameterization of Rotations Using the Exponential Map".
|
| 218 |
+
Expects a tensor of shape (*, 3), where * denotes any number of dimensions.
|
| 219 |
+
Returns a tensor of shape (*, 4).
|
| 220 |
+
"""
|
| 221 |
+
assert e.shape[-1] == 3
|
| 222 |
+
|
| 223 |
+
original_shape = list(e.shape)
|
| 224 |
+
original_shape[-1] = 4
|
| 225 |
+
e = e.reshape(-1, 3)
|
| 226 |
+
|
| 227 |
+
theta = np.linalg.norm(e, axis=1).reshape(-1, 1)
|
| 228 |
+
w = np.cos(0.5 * theta).reshape(-1, 1)
|
| 229 |
+
xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e
|
| 230 |
+
return np.concatenate((w, xyz), axis=1).reshape(original_shape)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def euler_to_quaternion(e, order):
|
| 234 |
+
"""
|
| 235 |
+
Convert Euler angles to quaternions.
|
| 236 |
+
"""
|
| 237 |
+
assert e.shape[-1] == 3
|
| 238 |
+
|
| 239 |
+
original_shape = list(e.shape)
|
| 240 |
+
original_shape[-1] = 4
|
| 241 |
+
|
| 242 |
+
e = e.reshape(-1, 3)
|
| 243 |
+
|
| 244 |
+
x = e[:, 0]
|
| 245 |
+
y = e[:, 1]
|
| 246 |
+
z = e[:, 2]
|
| 247 |
+
|
| 248 |
+
rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1)
|
| 249 |
+
ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1)
|
| 250 |
+
rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1)
|
| 251 |
+
|
| 252 |
+
result = None
|
| 253 |
+
for coord in order:
|
| 254 |
+
if coord == 'x':
|
| 255 |
+
r = rx
|
| 256 |
+
elif coord == 'y':
|
| 257 |
+
r = ry
|
| 258 |
+
elif coord == 'z':
|
| 259 |
+
r = rz
|
| 260 |
+
else:
|
| 261 |
+
raise
|
| 262 |
+
if result is None:
|
| 263 |
+
result = r
|
| 264 |
+
else:
|
| 265 |
+
result = qmul_np(result, r)
|
| 266 |
+
|
| 267 |
+
# Reverse antipodal representation to have a non-negative "w"
|
| 268 |
+
if order in ['xyz', 'yzx', 'zxy']:
|
| 269 |
+
result *= -1
|
| 270 |
+
|
| 271 |
+
return result.reshape(original_shape)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def quaternion_to_matrix(quaternions):
|
| 275 |
+
"""
|
| 276 |
+
Convert rotations given as quaternions to rotation matrices.
|
| 277 |
+
Args:
|
| 278 |
+
quaternions: quaternions with real part first,
|
| 279 |
+
as tensor of shape (..., 4).
|
| 280 |
+
Returns:
|
| 281 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
| 282 |
+
"""
|
| 283 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
| 284 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
| 285 |
+
|
| 286 |
+
o = torch.stack(
|
| 287 |
+
(
|
| 288 |
+
1 - two_s * (j * j + k * k),
|
| 289 |
+
two_s * (i * j - k * r),
|
| 290 |
+
two_s * (i * k + j * r),
|
| 291 |
+
two_s * (i * j + k * r),
|
| 292 |
+
1 - two_s * (i * i + k * k),
|
| 293 |
+
two_s * (j * k - i * r),
|
| 294 |
+
two_s * (i * k - j * r),
|
| 295 |
+
two_s * (j * k + i * r),
|
| 296 |
+
1 - two_s * (i * i + j * j),
|
| 297 |
+
),
|
| 298 |
+
-1,
|
| 299 |
+
)
|
| 300 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def quaternion_to_matrix_np(quaternions):
|
| 304 |
+
q = torch.from_numpy(quaternions).contiguous().float()
|
| 305 |
+
return quaternion_to_matrix(q).numpy()
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def quaternion_to_cont6d_np(quaternions):
|
| 309 |
+
rotation_mat = quaternion_to_matrix_np(quaternions)
|
| 310 |
+
cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1)
|
| 311 |
+
return cont_6d
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def quaternion_to_cont6d(quaternions):
|
| 315 |
+
rotation_mat = quaternion_to_matrix(quaternions)
|
| 316 |
+
cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1)
|
| 317 |
+
return cont_6d
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
def cont6d_to_matrix(cont6d):
|
| 321 |
+
assert cont6d.shape[-1] == 6, "The last dimension must be 6"
|
| 322 |
+
x_raw = cont6d[..., 0:3]
|
| 323 |
+
y_raw = cont6d[..., 3:6]
|
| 324 |
+
|
| 325 |
+
x = x_raw / torch.norm(x_raw, dim=-1, keepdim=True)
|
| 326 |
+
z = torch.cross(x, y_raw, dim=-1)
|
| 327 |
+
z = z / torch.norm(z, dim=-1, keepdim=True)
|
| 328 |
+
|
| 329 |
+
y = torch.cross(z, x, dim=-1)
|
| 330 |
+
|
| 331 |
+
x = x[..., None]
|
| 332 |
+
y = y[..., None]
|
| 333 |
+
z = z[..., None]
|
| 334 |
+
|
| 335 |
+
mat = torch.cat([x, y, z], dim=-1)
|
| 336 |
+
return mat
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def cont6d_to_matrix_np(cont6d):
|
| 340 |
+
q = torch.from_numpy(cont6d).contiguous().float()
|
| 341 |
+
return cont6d_to_matrix(q).numpy()
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def qpow(q0, t, dtype=torch.float):
|
| 345 |
+
''' q0 : tensor of quaternions
|
| 346 |
+
t: tensor of powers
|
| 347 |
+
'''
|
| 348 |
+
q0 = qnormalize(q0)
|
| 349 |
+
theta0 = torch.acos(q0[..., 0])
|
| 350 |
+
|
| 351 |
+
## if theta0 is close to zero, add epsilon to avoid NaNs
|
| 352 |
+
mask = (theta0 <= 10e-10) * (theta0 >= -10e-10)
|
| 353 |
+
theta0 = (1 - mask) * theta0 + mask * 10e-10
|
| 354 |
+
v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1)
|
| 355 |
+
|
| 356 |
+
if isinstance(t, torch.Tensor):
|
| 357 |
+
q = torch.zeros(t.shape + q0.shape)
|
| 358 |
+
theta = t.view(-1, 1) * theta0.view(1, -1)
|
| 359 |
+
else: ## if t is a number
|
| 360 |
+
q = torch.zeros(q0.shape)
|
| 361 |
+
theta = t * theta0
|
| 362 |
+
|
| 363 |
+
q[..., 0] = torch.cos(theta)
|
| 364 |
+
q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1)
|
| 365 |
+
|
| 366 |
+
return q.to(dtype)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def qslerp(q0, q1, t):
|
| 370 |
+
'''
|
| 371 |
+
q0: starting quaternion
|
| 372 |
+
q1: ending quaternion
|
| 373 |
+
t: array of points along the way
|
| 374 |
+
|
| 375 |
+
Returns:
|
| 376 |
+
Tensor of Slerps: t.shape + q0.shape
|
| 377 |
+
'''
|
| 378 |
+
|
| 379 |
+
q0 = qnormalize(q0)
|
| 380 |
+
q1 = qnormalize(q1)
|
| 381 |
+
q_ = qpow(qmul(q1, qinv(q0)), t)
|
| 382 |
+
|
| 383 |
+
return qmul(q_,
|
| 384 |
+
q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous())
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
def qbetween(v0, v1):
|
| 388 |
+
'''
|
| 389 |
+
find the quaternion used to rotate v0 to v1
|
| 390 |
+
'''
|
| 391 |
+
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
|
| 392 |
+
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
|
| 393 |
+
|
| 394 |
+
v = torch.cross(v0, v1)
|
| 395 |
+
w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1,
|
| 396 |
+
keepdim=True)
|
| 397 |
+
return qnormalize(torch.cat([w, v], dim=-1))
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def qbetween_np(v0, v1):
|
| 401 |
+
'''
|
| 402 |
+
find the quaternion used to rotate v0 to v1
|
| 403 |
+
'''
|
| 404 |
+
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
|
| 405 |
+
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
|
| 406 |
+
|
| 407 |
+
v0 = torch.from_numpy(v0).float()
|
| 408 |
+
v1 = torch.from_numpy(v1).float()
|
| 409 |
+
return qbetween(v0, v1).numpy()
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
def lerp(p0, p1, t):
|
| 413 |
+
if not isinstance(t, torch.Tensor):
|
| 414 |
+
t = torch.Tensor([t])
|
| 415 |
+
|
| 416 |
+
new_shape = t.shape + p0.shape
|
| 417 |
+
new_view_t = t.shape + torch.Size([1] * len(p0.shape))
|
| 418 |
+
new_view_p = torch.Size([1] * len(t.shape)) + p0.shape
|
| 419 |
+
p0 = p0.view(new_view_p).expand(new_shape)
|
| 420 |
+
p1 = p1.view(new_view_p).expand(new_shape)
|
| 421 |
+
t = t.view(new_view_t).expand(new_shape)
|
| 422 |
+
|
| 423 |
+
return p0 + t * (p1 - p0)
|
Evaluator_272/mld/data/humanml/common/skeleton.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .quaternion import *
|
| 2 |
+
import scipy.ndimage.filters as filters
|
| 3 |
+
|
| 4 |
+
class Skeleton(object):
|
| 5 |
+
def __init__(self, offset, kinematic_tree, device):
|
| 6 |
+
self.device = device
|
| 7 |
+
self._raw_offset_np = offset.numpy()
|
| 8 |
+
self._raw_offset = offset.clone().detach().to(device).float()
|
| 9 |
+
self._kinematic_tree = kinematic_tree
|
| 10 |
+
self._offset = None
|
| 11 |
+
self._parents = [0] * len(self._raw_offset)
|
| 12 |
+
self._parents[0] = -1
|
| 13 |
+
for chain in self._kinematic_tree:
|
| 14 |
+
for j in range(1, len(chain)):
|
| 15 |
+
self._parents[chain[j]] = chain[j-1]
|
| 16 |
+
|
| 17 |
+
def njoints(self):
|
| 18 |
+
return len(self._raw_offset)
|
| 19 |
+
|
| 20 |
+
def offset(self):
|
| 21 |
+
return self._offset
|
| 22 |
+
|
| 23 |
+
def set_offset(self, offsets):
|
| 24 |
+
self._offset = offsets.clone().detach().to(self.device).float()
|
| 25 |
+
|
| 26 |
+
def kinematic_tree(self):
|
| 27 |
+
return self._kinematic_tree
|
| 28 |
+
|
| 29 |
+
def parents(self):
|
| 30 |
+
return self._parents
|
| 31 |
+
|
| 32 |
+
# joints (batch_size, joints_num, 3)
|
| 33 |
+
def get_offsets_joints_batch(self, joints):
|
| 34 |
+
assert len(joints.shape) == 3
|
| 35 |
+
_offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone()
|
| 36 |
+
for i in range(1, self._raw_offset.shape[0]):
|
| 37 |
+
_offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i]
|
| 38 |
+
|
| 39 |
+
self._offset = _offsets.detach()
|
| 40 |
+
return _offsets
|
| 41 |
+
|
| 42 |
+
# joints (joints_num, 3)
|
| 43 |
+
def get_offsets_joints(self, joints):
|
| 44 |
+
assert len(joints.shape) == 2
|
| 45 |
+
_offsets = self._raw_offset.clone()
|
| 46 |
+
for i in range(1, self._raw_offset.shape[0]):
|
| 47 |
+
# print(joints.shape)
|
| 48 |
+
_offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i]
|
| 49 |
+
|
| 50 |
+
self._offset = _offsets.detach()
|
| 51 |
+
return _offsets
|
| 52 |
+
|
| 53 |
+
# face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder
|
| 54 |
+
# joints (batch_size, joints_num, 3)
|
| 55 |
+
def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False):
|
| 56 |
+
assert len(face_joint_idx) == 4
|
| 57 |
+
'''Get Forward Direction'''
|
| 58 |
+
l_hip, r_hip, sdr_r, sdr_l = face_joint_idx
|
| 59 |
+
across1 = joints[:, r_hip] - joints[:, l_hip]
|
| 60 |
+
across2 = joints[:, sdr_r] - joints[:, sdr_l]
|
| 61 |
+
across = across1 + across2
|
| 62 |
+
across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis]
|
| 63 |
+
# print(across1.shape, across2.shape)
|
| 64 |
+
|
| 65 |
+
# forward (batch_size, 3)
|
| 66 |
+
forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
|
| 67 |
+
if smooth_forward:
|
| 68 |
+
forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest')
|
| 69 |
+
# forward (batch_size, 3)
|
| 70 |
+
forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]
|
| 71 |
+
|
| 72 |
+
'''Get Root Rotation'''
|
| 73 |
+
target = np.array([[0,0,1]]).repeat(len(forward), axis=0)
|
| 74 |
+
root_quat = qbetween_np(forward, target)
|
| 75 |
+
|
| 76 |
+
'''Inverse Kinematics'''
|
| 77 |
+
# quat_params (batch_size, joints_num, 4)
|
| 78 |
+
# print(joints.shape[:-1])
|
| 79 |
+
quat_params = np.zeros(joints.shape[:-1] + (4,))
|
| 80 |
+
# print(quat_params.shape)
|
| 81 |
+
root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]])
|
| 82 |
+
quat_params[:, 0] = root_quat
|
| 83 |
+
# quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]])
|
| 84 |
+
for chain in self._kinematic_tree:
|
| 85 |
+
R = root_quat
|
| 86 |
+
for j in range(len(chain) - 1):
|
| 87 |
+
# (batch, 3)
|
| 88 |
+
u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0)
|
| 89 |
+
# print(u.shape)
|
| 90 |
+
# (batch, 3)
|
| 91 |
+
v = joints[:, chain[j+1]] - joints[:, chain[j]]
|
| 92 |
+
v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis]
|
| 93 |
+
# print(u.shape, v.shape)
|
| 94 |
+
rot_u_v = qbetween_np(u, v)
|
| 95 |
+
|
| 96 |
+
R_loc = qmul_np(qinv_np(R), rot_u_v)
|
| 97 |
+
|
| 98 |
+
quat_params[:,chain[j + 1], :] = R_loc
|
| 99 |
+
R = qmul_np(R, R_loc)
|
| 100 |
+
|
| 101 |
+
return quat_params
|
| 102 |
+
|
| 103 |
+
# Be sure root joint is at the beginning of kinematic chains
|
| 104 |
+
def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
|
| 105 |
+
# quat_params (batch_size, joints_num, 4)
|
| 106 |
+
# joints (batch_size, joints_num, 3)
|
| 107 |
+
# root_pos (batch_size, 3)
|
| 108 |
+
if skel_joints is not None:
|
| 109 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
| 110 |
+
if len(self._offset.shape) == 2:
|
| 111 |
+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
|
| 112 |
+
joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device)
|
| 113 |
+
joints[:, 0] = root_pos
|
| 114 |
+
for chain in self._kinematic_tree:
|
| 115 |
+
if do_root_R:
|
| 116 |
+
R = quat_params[:, 0]
|
| 117 |
+
else:
|
| 118 |
+
R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device)
|
| 119 |
+
for i in range(1, len(chain)):
|
| 120 |
+
R = qmul(R, quat_params[:, chain[i]])
|
| 121 |
+
offset_vec = offsets[:, chain[i]]
|
| 122 |
+
joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]]
|
| 123 |
+
return joints
|
| 124 |
+
|
| 125 |
+
# Be sure root joint is at the beginning of kinematic chains
|
| 126 |
+
def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
|
| 127 |
+
# quat_params (batch_size, joints_num, 4)
|
| 128 |
+
# joints (batch_size, joints_num, 3)
|
| 129 |
+
# root_pos (batch_size, 3)
|
| 130 |
+
if skel_joints is not None:
|
| 131 |
+
skel_joints = torch.from_numpy(skel_joints)
|
| 132 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
| 133 |
+
if len(self._offset.shape) == 2:
|
| 134 |
+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
|
| 135 |
+
offsets = offsets.numpy()
|
| 136 |
+
joints = np.zeros(quat_params.shape[:-1] + (3,))
|
| 137 |
+
joints[:, 0] = root_pos
|
| 138 |
+
for chain in self._kinematic_tree:
|
| 139 |
+
if do_root_R:
|
| 140 |
+
R = quat_params[:, 0]
|
| 141 |
+
else:
|
| 142 |
+
R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0)
|
| 143 |
+
for i in range(1, len(chain)):
|
| 144 |
+
R = qmul_np(R, quat_params[:, chain[i]])
|
| 145 |
+
offset_vec = offsets[:, chain[i]]
|
| 146 |
+
joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]]
|
| 147 |
+
return joints
|
| 148 |
+
|
| 149 |
+
def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
|
| 150 |
+
# cont6d_params (batch_size, joints_num, 6)
|
| 151 |
+
# joints (batch_size, joints_num, 3)
|
| 152 |
+
# root_pos (batch_size, 3)
|
| 153 |
+
if skel_joints is not None:
|
| 154 |
+
skel_joints = torch.from_numpy(skel_joints)
|
| 155 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
| 156 |
+
if len(self._offset.shape) == 2:
|
| 157 |
+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
|
| 158 |
+
offsets = offsets.numpy()
|
| 159 |
+
joints = np.zeros(cont6d_params.shape[:-1] + (3,))
|
| 160 |
+
joints[:, 0] = root_pos
|
| 161 |
+
for chain in self._kinematic_tree:
|
| 162 |
+
if do_root_R:
|
| 163 |
+
matR = cont6d_to_matrix_np(cont6d_params[:, 0])
|
| 164 |
+
else:
|
| 165 |
+
matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0)
|
| 166 |
+
for i in range(1, len(chain)):
|
| 167 |
+
matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]]))
|
| 168 |
+
offset_vec = offsets[:, chain[i]][..., np.newaxis]
|
| 169 |
+
# print(matR.shape, offset_vec.shape)
|
| 170 |
+
joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
|
| 171 |
+
return joints
|
| 172 |
+
|
| 173 |
+
def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
|
| 174 |
+
# cont6d_params (batch_size, joints_num, 6)
|
| 175 |
+
# joints (batch_size, joints_num, 3)
|
| 176 |
+
# root_pos (batch_size, 3)
|
| 177 |
+
if skel_joints is not None:
|
| 178 |
+
# skel_joints = torch.from_numpy(skel_joints)
|
| 179 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
| 180 |
+
if len(self._offset.shape) == 2:
|
| 181 |
+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
|
| 182 |
+
joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device)
|
| 183 |
+
joints[..., 0, :] = root_pos
|
| 184 |
+
for chain in self._kinematic_tree:
|
| 185 |
+
if do_root_R:
|
| 186 |
+
matR = cont6d_to_matrix(cont6d_params[:, 0])
|
| 187 |
+
else:
|
| 188 |
+
matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device)
|
| 189 |
+
for i in range(1, len(chain)):
|
| 190 |
+
matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]]))
|
| 191 |
+
offset_vec = offsets[:, chain[i]].unsqueeze(-1)
|
| 192 |
+
# print(matR.shape, offset_vec.shape)
|
| 193 |
+
joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
|
| 194 |
+
return joints
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
Evaluator_272/mld/data/humanml/data/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/data/humanml/data/dataset.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import codecs as cs
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
from os.path import join as pjoin
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import spacy
|
| 8 |
+
import torch
|
| 9 |
+
from rich.progress import track
|
| 10 |
+
from torch.utils import data
|
| 11 |
+
from torch.utils.data._utils.collate import default_collate
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
import json
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def collate_fn(batch):
|
| 17 |
+
batch.sort(key=lambda x: x[3], reverse=True)
|
| 18 |
+
return default_collate(batch)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def findAllFile(base):
|
| 23 |
+
file_path = []
|
| 24 |
+
for root, ds, fs in os.walk(base, followlinks=True):
|
| 25 |
+
for f in fs:
|
| 26 |
+
fullname = os.path.join(root, f)
|
| 27 |
+
file_path.append(fullname)
|
| 28 |
+
return file_path
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Text2MotionDatasetV2(data.Dataset):
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
mean,
|
| 36 |
+
std,
|
| 37 |
+
split_file,
|
| 38 |
+
max_motion_length,
|
| 39 |
+
min_motion_length,
|
| 40 |
+
max_text_len,
|
| 41 |
+
unit_length,
|
| 42 |
+
motion_dir,
|
| 43 |
+
text_dir,
|
| 44 |
+
input_format,
|
| 45 |
+
njoints,
|
| 46 |
+
tiny=False,
|
| 47 |
+
debug=False,
|
| 48 |
+
progress_bar=True,
|
| 49 |
+
**kwargs,
|
| 50 |
+
):
|
| 51 |
+
|
| 52 |
+
self.max_length = 20
|
| 53 |
+
self.pointer = 0
|
| 54 |
+
self.max_motion_length = max_motion_length
|
| 55 |
+
|
| 56 |
+
self.min_motion_length = min_motion_length
|
| 57 |
+
self.max_text_len = max_text_len
|
| 58 |
+
self.unit_length = unit_length
|
| 59 |
+
data_dict = {}
|
| 60 |
+
id_list = []
|
| 61 |
+
with cs.open(split_file, "r") as f:
|
| 62 |
+
for line in f.readlines():
|
| 63 |
+
id_list.append(line.strip())
|
| 64 |
+
self.id_list = id_list
|
| 65 |
+
if tiny or debug:
|
| 66 |
+
progress_bar = False
|
| 67 |
+
maxdata = 10 if tiny else 100
|
| 68 |
+
else:
|
| 69 |
+
maxdata = 1e10
|
| 70 |
+
|
| 71 |
+
if progress_bar:
|
| 72 |
+
enumerator = enumerate(
|
| 73 |
+
track(
|
| 74 |
+
id_list,
|
| 75 |
+
f"Loading {split_file.split('/')[-2]} {split_file.split('/')[-1].split('.')[0]}",
|
| 76 |
+
))
|
| 77 |
+
else:
|
| 78 |
+
enumerator = enumerate(id_list)
|
| 79 |
+
count = 0
|
| 80 |
+
bad_count = 0
|
| 81 |
+
miss_count = 0
|
| 82 |
+
new_name_list = []
|
| 83 |
+
length_list = []
|
| 84 |
+
|
| 85 |
+
for i, name in enumerator:
|
| 86 |
+
if count > maxdata:
|
| 87 |
+
break
|
| 88 |
+
try:
|
| 89 |
+
|
| 90 |
+
motion = np.load(pjoin(motion_dir, name + ".npy"))
|
| 91 |
+
|
| 92 |
+
if input_format == 'root_position':
|
| 93 |
+
motion = motion[..., :4+(njoints-1)*3]
|
| 94 |
+
elif input_format == 'root_position_vel':
|
| 95 |
+
motion = np.concatenate((motion[..., :4+(njoints - 1) * 3], motion[..., 4+(njoints - 1) * 9: 4+(njoints - 1) * 9 + njoints*3]), axis=-1)
|
| 96 |
+
elif input_format == 'root_position_rot6d':
|
| 97 |
+
motion = np.concatenate((motion[..., :4+(njoints - 1) * 3], motion[..., 4+(njoints - 1) * 3: 4+(njoints - 1) * 9]), axis=-1)
|
| 98 |
+
elif input_format == 'root_rot6d':
|
| 99 |
+
motion = np.concatenate((motion[..., :4], motion[..., 4+(njoints - 1) * 3: 4+(njoints - 1) * 9]), axis=-1)
|
| 100 |
+
elif input_format in ['vector_263', '']:
|
| 101 |
+
pass
|
| 102 |
+
else:
|
| 103 |
+
raise NotImplementedError
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
text_data = []
|
| 107 |
+
flag = False
|
| 108 |
+
with cs.open(pjoin(text_dir, name + ".txt")) as f:
|
| 109 |
+
for line in f.readlines():
|
| 110 |
+
text_dict = {}
|
| 111 |
+
line_split = line.strip().split("#")
|
| 112 |
+
caption = line_split[0]
|
| 113 |
+
tokens = line_split[1].split(" ")
|
| 114 |
+
f_tag = float(line_split[2])
|
| 115 |
+
to_tag = float(line_split[3])
|
| 116 |
+
f_tag = 0.0 if np.isnan(f_tag) else f_tag
|
| 117 |
+
to_tag = 0.0 if np.isnan(to_tag) else to_tag
|
| 118 |
+
|
| 119 |
+
text_dict["caption"] = caption
|
| 120 |
+
text_dict["tokens"] = tokens
|
| 121 |
+
if f_tag == 0.0 and to_tag == 0.0:
|
| 122 |
+
flag = True
|
| 123 |
+
text_data.append(text_dict)
|
| 124 |
+
else:
|
| 125 |
+
try:
|
| 126 |
+
n_motion = motion[int(f_tag * 30):int(to_tag * 30)]
|
| 127 |
+
|
| 128 |
+
new_name = (
|
| 129 |
+
random.choice("ABCDEFGHIJKLMNOPQRSTUVW") +
|
| 130 |
+
"_" + name)
|
| 131 |
+
while new_name in data_dict:
|
| 132 |
+
new_name = (random.choice(
|
| 133 |
+
"ABCDEFGHIJKLMNOPQRSTUVW") + "_" +
|
| 134 |
+
name)
|
| 135 |
+
data_dict[new_name] = {
|
| 136 |
+
"motion": n_motion,
|
| 137 |
+
"length": len(n_motion),
|
| 138 |
+
"text": [text_dict],
|
| 139 |
+
}
|
| 140 |
+
new_name_list.append(new_name)
|
| 141 |
+
length_list.append(len(n_motion))
|
| 142 |
+
except:
|
| 143 |
+
print(line_split)
|
| 144 |
+
print(line_split[2], line_split[3], f_tag,
|
| 145 |
+
to_tag, name)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
if flag:
|
| 149 |
+
data_dict[name] = {
|
| 150 |
+
"motion": motion,
|
| 151 |
+
"length": len(motion),
|
| 152 |
+
"text": text_data,
|
| 153 |
+
}
|
| 154 |
+
new_name_list.append(name)
|
| 155 |
+
length_list.append(len(motion))
|
| 156 |
+
count += 1
|
| 157 |
+
|
| 158 |
+
except:
|
| 159 |
+
miss_count += 1
|
| 160 |
+
pass
|
| 161 |
+
|
| 162 |
+
print(f'Here are {miss_count} not in dataset!')
|
| 163 |
+
|
| 164 |
+
name_list, length_list = zip(
|
| 165 |
+
*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
self.mean = mean
|
| 170 |
+
self.std = std
|
| 171 |
+
|
| 172 |
+
self.length_arr = np.array(length_list)
|
| 173 |
+
self.data_dict = data_dict
|
| 174 |
+
self.nfeats = motion.shape[1]
|
| 175 |
+
self.name_list = name_list
|
| 176 |
+
self.reset_max_len(self.max_length)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def reset_max_len(self, length):
|
| 180 |
+
assert length <= self.max_motion_length
|
| 181 |
+
self.pointer = np.searchsorted(self.length_arr, length)
|
| 182 |
+
print("Pointer Pointing at %d" % self.pointer)
|
| 183 |
+
self.max_length = length
|
| 184 |
+
|
| 185 |
+
def inv_transform(self, data):
|
| 186 |
+
return data * self.std + self.mean
|
| 187 |
+
|
| 188 |
+
def __len__(self):
|
| 189 |
+
return len(self.name_list) - self.pointer
|
| 190 |
+
|
| 191 |
+
def __getitem__(self, item):
|
| 192 |
+
idx = self.pointer + item
|
| 193 |
+
data = self.data_dict[self.name_list[idx]]
|
| 194 |
+
|
| 195 |
+
retrieval_name = self.name_list[idx].split('_')[-1]
|
| 196 |
+
|
| 197 |
+
motion, m_length, text_list = data["motion"], data["length"], data["text"]
|
| 198 |
+
|
| 199 |
+
# Randomly select a caption
|
| 200 |
+
text_data = random.choice(text_list)
|
| 201 |
+
# caption, tokens = text_data["caption"], text_data["tokens"]
|
| 202 |
+
caption = text_data["caption"]
|
| 203 |
+
|
| 204 |
+
# Crop the motions in to times of 4, and introduce small variations
|
| 205 |
+
if self.unit_length < 10:
|
| 206 |
+
coin2 = np.random.choice(["single", "single", "double"])
|
| 207 |
+
else:
|
| 208 |
+
coin2 = "single"
|
| 209 |
+
|
| 210 |
+
if coin2 == "double":
|
| 211 |
+
m_length = (m_length // self.unit_length - 1) * self.unit_length
|
| 212 |
+
elif coin2 == "single":
|
| 213 |
+
m_length = (m_length // self.unit_length) * self.unit_length
|
| 214 |
+
idx = random.randint(0, len(motion) - m_length)
|
| 215 |
+
motion = motion[idx:idx + m_length]
|
| 216 |
+
"Normalization"
|
| 217 |
+
motion = (motion - self.mean) / self.std
|
| 218 |
+
|
| 219 |
+
if np.any(np.isnan(motion)):
|
| 220 |
+
raise ValueError("nan in motion")
|
| 221 |
+
|
| 222 |
+
return (
|
| 223 |
+
caption,
|
| 224 |
+
motion,
|
| 225 |
+
m_length,
|
| 226 |
+
retrieval_name
|
| 227 |
+
)
|
Evaluator_272/mld/data/humanml/scripts/motion_process.py
ADDED
|
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from os.path import join as pjoin
|
| 2 |
+
|
| 3 |
+
from ..common.skeleton import Skeleton
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
from ..common.quaternion import *
|
| 7 |
+
from ..utils.paramUtil import *
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
|
| 12 |
+
# positions (batch, joint_num, 3)
|
| 13 |
+
def uniform_skeleton(positions, target_offset):
|
| 14 |
+
src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
|
| 15 |
+
src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0]))
|
| 16 |
+
src_offset = src_offset.numpy()
|
| 17 |
+
tgt_offset = target_offset.numpy()
|
| 18 |
+
# print(src_offset)
|
| 19 |
+
# print(tgt_offset)
|
| 20 |
+
'''Calculate Scale Ratio as the ratio of legs'''
|
| 21 |
+
src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max()
|
| 22 |
+
tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max()
|
| 23 |
+
|
| 24 |
+
scale_rt = tgt_leg_len / src_leg_len
|
| 25 |
+
# print(scale_rt)
|
| 26 |
+
src_root_pos = positions[:, 0]
|
| 27 |
+
tgt_root_pos = src_root_pos * scale_rt
|
| 28 |
+
|
| 29 |
+
'''Inverse Kinematics'''
|
| 30 |
+
quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx)
|
| 31 |
+
# print(quat_params.shape)
|
| 32 |
+
|
| 33 |
+
'''Forward Kinematics'''
|
| 34 |
+
src_skel.set_offset(target_offset)
|
| 35 |
+
new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos)
|
| 36 |
+
return new_joints
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l):
|
| 40 |
+
global_positions = positions.copy()
|
| 41 |
+
""" Get Foot Contacts """
|
| 42 |
+
|
| 43 |
+
def foot_detect(positions, thres):
|
| 44 |
+
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
|
| 45 |
+
|
| 46 |
+
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
|
| 47 |
+
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
|
| 48 |
+
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
|
| 49 |
+
# feet_l_h = positions[:-1,fid_l,1]
|
| 50 |
+
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float64)
|
| 51 |
+
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float64)
|
| 52 |
+
|
| 53 |
+
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
|
| 54 |
+
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
|
| 55 |
+
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
|
| 56 |
+
# feet_r_h = positions[:-1,fid_r,1]
|
| 57 |
+
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float64)
|
| 58 |
+
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float64)
|
| 59 |
+
return feet_l, feet_r
|
| 60 |
+
|
| 61 |
+
#
|
| 62 |
+
feet_l, feet_r = foot_detect(positions, feet_thre)
|
| 63 |
+
# feet_l, feet_r = foot_detect(positions, 0.002)
|
| 64 |
+
|
| 65 |
+
'''Quaternion and Cartesian representation'''
|
| 66 |
+
r_rot = None
|
| 67 |
+
|
| 68 |
+
def get_rifke(positions):
|
| 69 |
+
'''Local pose'''
|
| 70 |
+
positions[..., 0] -= positions[:, 0:1, 0]
|
| 71 |
+
positions[..., 2] -= positions[:, 0:1, 2]
|
| 72 |
+
'''All pose face Z+'''
|
| 73 |
+
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
|
| 74 |
+
return positions
|
| 75 |
+
|
| 76 |
+
def get_quaternion(positions):
|
| 77 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
| 78 |
+
# (seq_len, joints_num, 4)
|
| 79 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
|
| 80 |
+
|
| 81 |
+
'''Fix Quaternion Discontinuity'''
|
| 82 |
+
quat_params = qfix(quat_params)
|
| 83 |
+
# (seq_len, 4)
|
| 84 |
+
r_rot = quat_params[:, 0].copy()
|
| 85 |
+
# print(r_rot[0])
|
| 86 |
+
'''Root Linear Velocity'''
|
| 87 |
+
# (seq_len - 1, 3)
|
| 88 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
| 89 |
+
# print(r_rot.shape, velocity.shape)
|
| 90 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
| 91 |
+
'''Root Angular Velocity'''
|
| 92 |
+
# (seq_len - 1, 4)
|
| 93 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
| 94 |
+
quat_params[1:, 0] = r_velocity
|
| 95 |
+
# (seq_len, joints_num, 4)
|
| 96 |
+
return quat_params, r_velocity, velocity, r_rot
|
| 97 |
+
|
| 98 |
+
def get_cont6d_params(positions):
|
| 99 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
| 100 |
+
# (seq_len, joints_num, 4)
|
| 101 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
|
| 102 |
+
|
| 103 |
+
'''Quaternion to continuous 6D'''
|
| 104 |
+
cont_6d_params = quaternion_to_cont6d_np(quat_params)
|
| 105 |
+
# (seq_len, 4)
|
| 106 |
+
r_rot = quat_params[:, 0].copy()
|
| 107 |
+
# print(r_rot[0])
|
| 108 |
+
'''Root Linear Velocity'''
|
| 109 |
+
# (seq_len - 1, 3)
|
| 110 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
| 111 |
+
# print(r_rot.shape, velocity.shape)
|
| 112 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
| 113 |
+
'''Root Angular Velocity'''
|
| 114 |
+
# (seq_len - 1, 4)
|
| 115 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
| 116 |
+
# (seq_len, joints_num, 4)
|
| 117 |
+
return cont_6d_params, r_velocity, velocity, r_rot
|
| 118 |
+
|
| 119 |
+
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
|
| 120 |
+
positions = get_rifke(positions)
|
| 121 |
+
|
| 122 |
+
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
|
| 123 |
+
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
|
| 124 |
+
|
| 125 |
+
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
|
| 126 |
+
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
|
| 127 |
+
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
|
| 128 |
+
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
|
| 129 |
+
# plt.xlabel('x')
|
| 130 |
+
# plt.ylabel('z')
|
| 131 |
+
# plt.axis('equal')
|
| 132 |
+
# plt.show()
|
| 133 |
+
|
| 134 |
+
'''Root height'''
|
| 135 |
+
root_y = positions[:, 0, 1:2]
|
| 136 |
+
|
| 137 |
+
'''Root rotation and linear velocity'''
|
| 138 |
+
# (seq_len-1, 1) rotation velocity along y-axis
|
| 139 |
+
# (seq_len-1, 2) linear velovity on xz plane
|
| 140 |
+
r_velocity = np.arcsin(r_velocity[:, 2:3])
|
| 141 |
+
l_velocity = velocity[:, [0, 2]]
|
| 142 |
+
# print(r_velocity.shape, l_velocity.shape, root_y.shape)
|
| 143 |
+
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
|
| 144 |
+
|
| 145 |
+
'''Get Joint Rotation Representation'''
|
| 146 |
+
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints
|
| 147 |
+
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
|
| 148 |
+
|
| 149 |
+
'''Get Joint Rotation Invariant Position Represention'''
|
| 150 |
+
# (seq_len, (joints_num-1)*3) local joint position
|
| 151 |
+
ric_data = positions[:, 1:].reshape(len(positions), -1)
|
| 152 |
+
|
| 153 |
+
'''Get Joint Velocity Representation'''
|
| 154 |
+
# (seq_len-1, joints_num*3)
|
| 155 |
+
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
|
| 156 |
+
global_positions[1:] - global_positions[:-1])
|
| 157 |
+
local_vel = local_vel.reshape(len(local_vel), -1)
|
| 158 |
+
|
| 159 |
+
data = root_data
|
| 160 |
+
data = np.concatenate([data, ric_data[:-1]], axis=-1)
|
| 161 |
+
data = np.concatenate([data, rot_data[:-1]], axis=-1)
|
| 162 |
+
# print(dataset.shape, local_vel.shape)
|
| 163 |
+
data = np.concatenate([data, local_vel], axis=-1)
|
| 164 |
+
data = np.concatenate([data, feet_l, feet_r], axis=-1)
|
| 165 |
+
|
| 166 |
+
return data
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def process_file(positions, feet_thre):
|
| 170 |
+
# (seq_len, joints_num, 3)
|
| 171 |
+
# '''Down Sample'''
|
| 172 |
+
# positions = positions[::ds_num]
|
| 173 |
+
|
| 174 |
+
'''Uniform Skeleton'''
|
| 175 |
+
positions = uniform_skeleton(positions, tgt_offsets)
|
| 176 |
+
|
| 177 |
+
'''Put on Floor'''
|
| 178 |
+
floor_height = positions.min(axis=0).min(axis=0)[1]
|
| 179 |
+
positions[:, :, 1] -= floor_height
|
| 180 |
+
# print(floor_height)
|
| 181 |
+
|
| 182 |
+
# plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20)
|
| 183 |
+
|
| 184 |
+
'''XZ at origin'''
|
| 185 |
+
root_pos_init = positions[0]
|
| 186 |
+
root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1])
|
| 187 |
+
positions = positions - root_pose_init_xz
|
| 188 |
+
|
| 189 |
+
# '''Move the first pose to origin '''
|
| 190 |
+
# root_pos_init = positions[0]
|
| 191 |
+
# positions = positions - root_pos_init[0]
|
| 192 |
+
|
| 193 |
+
'''All initially face Z+'''
|
| 194 |
+
r_hip, l_hip, sdr_r, sdr_l = face_joint_indx
|
| 195 |
+
across1 = root_pos_init[r_hip] - root_pos_init[l_hip]
|
| 196 |
+
across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l]
|
| 197 |
+
across = across1 + across2
|
| 198 |
+
across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis]
|
| 199 |
+
|
| 200 |
+
# forward (3,), rotate around y-axis
|
| 201 |
+
forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
|
| 202 |
+
# forward (3,)
|
| 203 |
+
forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis]
|
| 204 |
+
|
| 205 |
+
# print(forward_init)
|
| 206 |
+
|
| 207 |
+
target = np.array([[0, 0, 1]])
|
| 208 |
+
root_quat_init = qbetween_np(forward_init, target)
|
| 209 |
+
root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init
|
| 210 |
+
|
| 211 |
+
positions_b = positions.copy()
|
| 212 |
+
|
| 213 |
+
positions = qrot_np(root_quat_init, positions)
|
| 214 |
+
|
| 215 |
+
# plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20)
|
| 216 |
+
|
| 217 |
+
'''New ground truth positions'''
|
| 218 |
+
global_positions = positions.copy()
|
| 219 |
+
|
| 220 |
+
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
|
| 221 |
+
# plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r')
|
| 222 |
+
# plt.xlabel('x')
|
| 223 |
+
# plt.ylabel('z')
|
| 224 |
+
# plt.axis('equal')
|
| 225 |
+
# plt.show()
|
| 226 |
+
|
| 227 |
+
""" Get Foot Contacts """
|
| 228 |
+
|
| 229 |
+
def foot_detect(positions, thres):
|
| 230 |
+
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
|
| 231 |
+
|
| 232 |
+
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
|
| 233 |
+
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
|
| 234 |
+
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
|
| 235 |
+
# feet_l_h = positions[:-1,fid_l,1]
|
| 236 |
+
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float64)
|
| 237 |
+
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float64)
|
| 238 |
+
|
| 239 |
+
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
|
| 240 |
+
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
|
| 241 |
+
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
|
| 242 |
+
# feet_r_h = positions[:-1,fid_r,1]
|
| 243 |
+
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float64)
|
| 244 |
+
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float64)
|
| 245 |
+
return feet_l, feet_r
|
| 246 |
+
#
|
| 247 |
+
feet_l, feet_r = foot_detect(positions, feet_thre)
|
| 248 |
+
# feet_l, feet_r = foot_detect(positions, 0.002)
|
| 249 |
+
|
| 250 |
+
'''Quaternion and Cartesian representation'''
|
| 251 |
+
r_rot = None
|
| 252 |
+
|
| 253 |
+
def get_rifke(positions):
|
| 254 |
+
'''Local pose'''
|
| 255 |
+
positions[..., 0] -= positions[:, 0:1, 0]
|
| 256 |
+
positions[..., 2] -= positions[:, 0:1, 2]
|
| 257 |
+
'''All pose face Z+'''
|
| 258 |
+
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
|
| 259 |
+
return positions
|
| 260 |
+
|
| 261 |
+
def get_quaternion(positions):
|
| 262 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
| 263 |
+
# (seq_len, joints_num, 4)
|
| 264 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
|
| 265 |
+
|
| 266 |
+
'''Fix Quaternion Discontinuity'''
|
| 267 |
+
quat_params = qfix(quat_params)
|
| 268 |
+
# (seq_len, 4)
|
| 269 |
+
r_rot = quat_params[:, 0].copy()
|
| 270 |
+
# print(r_rot[0])
|
| 271 |
+
'''Root Linear Velocity'''
|
| 272 |
+
# (seq_len - 1, 3)
|
| 273 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
| 274 |
+
# print(r_rot.shape, velocity.shape)
|
| 275 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
| 276 |
+
'''Root Angular Velocity'''
|
| 277 |
+
# (seq_len - 1, 4)
|
| 278 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
| 279 |
+
quat_params[1:, 0] = r_velocity
|
| 280 |
+
# (seq_len, joints_num, 4)
|
| 281 |
+
return quat_params, r_velocity, velocity, r_rot
|
| 282 |
+
|
| 283 |
+
def get_cont6d_params(positions):
|
| 284 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
| 285 |
+
# (seq_len, joints_num, 4)
|
| 286 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
|
| 287 |
+
|
| 288 |
+
'''Quaternion to continuous 6D'''
|
| 289 |
+
cont_6d_params = quaternion_to_cont6d_np(quat_params)
|
| 290 |
+
# (seq_len, 4)
|
| 291 |
+
r_rot = quat_params[:, 0].copy()
|
| 292 |
+
# print(r_rot[0])
|
| 293 |
+
'''Root Linear Velocity'''
|
| 294 |
+
# (seq_len - 1, 3)
|
| 295 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
| 296 |
+
# print(r_rot.shape, velocity.shape)
|
| 297 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
| 298 |
+
'''Root Angular Velocity'''
|
| 299 |
+
# (seq_len - 1, 4)
|
| 300 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
| 301 |
+
# (seq_len, joints_num, 4)
|
| 302 |
+
return cont_6d_params, r_velocity, velocity, r_rot
|
| 303 |
+
|
| 304 |
+
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
|
| 305 |
+
positions = get_rifke(positions)
|
| 306 |
+
|
| 307 |
+
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
|
| 308 |
+
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
|
| 309 |
+
|
| 310 |
+
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
|
| 311 |
+
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
|
| 312 |
+
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
|
| 313 |
+
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
|
| 314 |
+
# plt.xlabel('x')
|
| 315 |
+
# plt.ylabel('z')
|
| 316 |
+
# plt.axis('equal')
|
| 317 |
+
# plt.show()
|
| 318 |
+
|
| 319 |
+
'''Root height'''
|
| 320 |
+
root_y = positions[:, 0, 1:2]
|
| 321 |
+
|
| 322 |
+
'''Root rotation and linear velocity'''
|
| 323 |
+
# (seq_len-1, 1) rotation velocity along y-axis
|
| 324 |
+
# (seq_len-1, 2) linear velovity on xz plane
|
| 325 |
+
r_velocity = np.arcsin(r_velocity[:, 2:3])
|
| 326 |
+
l_velocity = velocity[:, [0, 2]]
|
| 327 |
+
# print(r_velocity.shape, l_velocity.shape, root_y.shape)
|
| 328 |
+
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
|
| 329 |
+
|
| 330 |
+
'''Get Joint Rotation Representation'''
|
| 331 |
+
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints
|
| 332 |
+
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
|
| 333 |
+
|
| 334 |
+
'''Get Joint Rotation Invariant Position Represention'''
|
| 335 |
+
# (seq_len, (joints_num-1)*3) local joint position
|
| 336 |
+
ric_data = positions[:, 1:].reshape(len(positions), -1)
|
| 337 |
+
|
| 338 |
+
'''Get Joint Velocity Representation'''
|
| 339 |
+
# (seq_len-1, joints_num*3)
|
| 340 |
+
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
|
| 341 |
+
global_positions[1:] - global_positions[:-1])
|
| 342 |
+
local_vel = local_vel.reshape(len(local_vel), -1)
|
| 343 |
+
|
| 344 |
+
data = root_data
|
| 345 |
+
data = np.concatenate([data, ric_data[:-1]], axis=-1)
|
| 346 |
+
data = np.concatenate([data, rot_data[:-1]], axis=-1)
|
| 347 |
+
# print(dataset.shape, local_vel.shape)
|
| 348 |
+
data = np.concatenate([data, local_vel], axis=-1)
|
| 349 |
+
data = np.concatenate([data, feet_l, feet_r], axis=-1)
|
| 350 |
+
|
| 351 |
+
return data, global_positions, positions, l_velocity
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
# Recover global angle and positions for rotation dataset
|
| 355 |
+
# root_rot_velocity (B, seq_len, 1)
|
| 356 |
+
# root_linear_velocity (B, seq_len, 2)
|
| 357 |
+
# root_y (B, seq_len, 1)
|
| 358 |
+
# ric_data (B, seq_len, (joint_num - 1)*3)
|
| 359 |
+
# rot_data (B, seq_len, (joint_num - 1)*6)
|
| 360 |
+
# local_velocity (B, seq_len, joint_num*3)
|
| 361 |
+
# foot contact (B, seq_len, 4)
|
| 362 |
+
def recover_root_rot_pos(data):
|
| 363 |
+
rot_vel = data[..., 0]
|
| 364 |
+
r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
|
| 365 |
+
'''Get Y-axis rotation from rotation velocity'''
|
| 366 |
+
r_rot_ang[..., 1:] = rot_vel[..., :-1]
|
| 367 |
+
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)
|
| 368 |
+
|
| 369 |
+
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device)
|
| 370 |
+
r_rot_quat[..., 0] = torch.cos(r_rot_ang)
|
| 371 |
+
r_rot_quat[..., 2] = torch.sin(r_rot_ang)
|
| 372 |
+
|
| 373 |
+
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device)
|
| 374 |
+
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
|
| 375 |
+
'''Add Y-axis rotation to root position'''
|
| 376 |
+
r_pos = qrot(qinv(r_rot_quat), r_pos)
|
| 377 |
+
|
| 378 |
+
r_pos = torch.cumsum(r_pos, dim=-2)
|
| 379 |
+
|
| 380 |
+
r_pos[..., 1] = data[..., 3]
|
| 381 |
+
return r_rot_quat, r_pos
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def recover_from_rot(data, joints_num, skeleton):
|
| 385 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
| 386 |
+
|
| 387 |
+
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
|
| 388 |
+
|
| 389 |
+
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
|
| 390 |
+
end_indx = start_indx + (joints_num - 1) * 6
|
| 391 |
+
cont6d_params = data[..., start_indx:end_indx]
|
| 392 |
+
# print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape)
|
| 393 |
+
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
|
| 394 |
+
cont6d_params = cont6d_params.view(-1, joints_num, 6)
|
| 395 |
+
|
| 396 |
+
positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos)
|
| 397 |
+
|
| 398 |
+
return positions
|
| 399 |
+
|
| 400 |
+
def recover_from_root_rot6d(data, joints_num, skeleton):
|
| 401 |
+
|
| 402 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
| 403 |
+
|
| 404 |
+
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
|
| 405 |
+
|
| 406 |
+
start_indx = 1 + 2 + 1
|
| 407 |
+
end_indx = start_indx + (joints_num - 1) * 6
|
| 408 |
+
cont6d_params = data[..., start_indx:end_indx]
|
| 409 |
+
# print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape)
|
| 410 |
+
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
|
| 411 |
+
cont6d_params = cont6d_params.view(-1, joints_num, 6)
|
| 412 |
+
r_pos = r_pos.view(-1,3)
|
| 413 |
+
positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos)
|
| 414 |
+
return positions
|
| 415 |
+
|
| 416 |
+
def recover_from_body_pos_vel_hand_rot(data, joints_num, skeleton):
|
| 417 |
+
assert len(skeleton) == 2
|
| 418 |
+
body_skel = skeleton[0]
|
| 419 |
+
all_skel = skeleton[1]
|
| 420 |
+
assert joints_num == 52
|
| 421 |
+
face_joint_indx = [2, 1, 17, 16]
|
| 422 |
+
|
| 423 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
| 424 |
+
|
| 425 |
+
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
|
| 426 |
+
|
| 427 |
+
pos_body_data = data[..., : 4 + 21 * 3]
|
| 428 |
+
pos_body_data_global = recover_from_ric(pos_body_data, 22)
|
| 429 |
+
# pos_body_data_global shape (bs, frame, 22, 3)
|
| 430 |
+
quat_params = body_skel.inverse_kinematics(pos_body_data_global, face_joint_indx)
|
| 431 |
+
bs = quat_params.shape[0]
|
| 432 |
+
frame = quat_params.shape[1]
|
| 433 |
+
cont6d_params = quaternion_to_cont6d(quat_params).view(bs, frame, -1)
|
| 434 |
+
|
| 435 |
+
# cont6d_params
|
| 436 |
+
rot6d_hand_data = data[..., 4 + 21 * 3: 4 + 21 * 3 + 30 * 6]
|
| 437 |
+
|
| 438 |
+
cont6d_params = torch.cat([cont6d_params, rot6d_hand_data], dim=-1)
|
| 439 |
+
cont6d_params = cont6d_params.view(-1, joints_num, 6)
|
| 440 |
+
r_pos = r_pos.view(-1,3)
|
| 441 |
+
positions = all_skel.forward_kinematics_cont6d(cont6d_params, r_pos)
|
| 442 |
+
return positions
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def recover_rot(data):
|
| 446 |
+
# dataset [bs, seqlen, 263/251] HumanML/KIT
|
| 447 |
+
joints_num = 22 if data.shape[-1] == 263 else 21
|
| 448 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
| 449 |
+
r_pos_pad = torch.cat([r_pos, torch.zeros_like(r_pos)], dim=-1).unsqueeze(-2)
|
| 450 |
+
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
|
| 451 |
+
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
|
| 452 |
+
end_indx = start_indx + (joints_num - 1) * 6
|
| 453 |
+
cont6d_params = data[..., start_indx:end_indx]
|
| 454 |
+
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
|
| 455 |
+
cont6d_params = cont6d_params.view(-1, joints_num, 6)
|
| 456 |
+
cont6d_params = torch.cat([cont6d_params, r_pos_pad], dim=-2)
|
| 457 |
+
return cont6d_params
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
def recover_from_ric(data, joints_num):
|
| 461 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
| 462 |
+
positions = data[..., 4:(joints_num - 1) * 3 + 4]
|
| 463 |
+
positions = positions.view(positions.shape[:-1] + (-1, 3))
|
| 464 |
+
|
| 465 |
+
'''Add Y-axis rotation to local joints'''
|
| 466 |
+
positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions)
|
| 467 |
+
|
| 468 |
+
'''Add root XZ to joints'''
|
| 469 |
+
positions[..., 0] += r_pos[..., 0:1]
|
| 470 |
+
positions[..., 2] += r_pos[..., 2:3]
|
| 471 |
+
|
| 472 |
+
'''Concate root and joints'''
|
| 473 |
+
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)
|
| 474 |
+
|
| 475 |
+
return positions
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
'''
|
| 479 |
+
For Text2Motion Dataset
|
| 480 |
+
'''
|
| 481 |
+
'''
|
| 482 |
+
if __name__ == "__main__":
|
| 483 |
+
example_id = "000021"
|
| 484 |
+
# Lower legs
|
| 485 |
+
l_idx1, l_idx2 = 5, 8
|
| 486 |
+
# Right/Left foot
|
| 487 |
+
fid_r, fid_l = [8, 11], [7, 10]
|
| 488 |
+
# Face direction, r_hip, l_hip, sdr_r, sdr_l
|
| 489 |
+
face_joint_indx = [2, 1, 17, 16]
|
| 490 |
+
# l_hip, r_hip
|
| 491 |
+
r_hip, l_hip = 2, 1
|
| 492 |
+
joints_num = 22
|
| 493 |
+
# ds_num = 8
|
| 494 |
+
data_dir = '../dataset/pose_data_raw/joints/'
|
| 495 |
+
save_dir1 = '../dataset/pose_data_raw/new_joints/'
|
| 496 |
+
save_dir2 = '../dataset/pose_data_raw/new_joint_vecs/'
|
| 497 |
+
|
| 498 |
+
n_raw_offsets = torch.from_numpy(t2m_raw_offsets)
|
| 499 |
+
kinematic_chain = t2m_kinematic_chain
|
| 500 |
+
|
| 501 |
+
# Get offsets of target skeleton
|
| 502 |
+
example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
|
| 503 |
+
example_data = example_data.reshape(len(example_data), -1, 3)
|
| 504 |
+
example_data = torch.from_numpy(example_data)
|
| 505 |
+
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
|
| 506 |
+
# (joints_num, 3)
|
| 507 |
+
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
|
| 508 |
+
# print(tgt_offsets)
|
| 509 |
+
|
| 510 |
+
source_list = os.listdir(data_dir)
|
| 511 |
+
frame_num = 0
|
| 512 |
+
for source_file in tqdm(source_list):
|
| 513 |
+
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
|
| 514 |
+
try:
|
| 515 |
+
dataset, ground_positions, positions, l_velocity = process_file(source_data, 0.002)
|
| 516 |
+
rec_ric_data = recover_from_ric(torch.from_numpy(dataset).unsqueeze(0).float(), joints_num)
|
| 517 |
+
np.save(pjoin(save_dir1, source_file), rec_ric_data.squeeze().numpy())
|
| 518 |
+
np.save(pjoin(save_dir2, source_file), dataset)
|
| 519 |
+
frame_num += dataset.shape[0]
|
| 520 |
+
except Exception as e:
|
| 521 |
+
print(source_file)
|
| 522 |
+
print(e)
|
| 523 |
+
|
| 524 |
+
print('Total clips: %d, Frames: %d, Duration: %fm' %
|
| 525 |
+
(len(source_list), frame_num, frame_num / 20 / 60))
|
| 526 |
+
'''
|
| 527 |
+
|
| 528 |
+
if __name__ == "__main__":
|
| 529 |
+
example_id = "03950_gt"
|
| 530 |
+
# Lower legs
|
| 531 |
+
l_idx1, l_idx2 = 17, 18
|
| 532 |
+
# Right/Left foot
|
| 533 |
+
fid_r, fid_l = [14, 15], [19, 20]
|
| 534 |
+
# Face direction, r_hip, l_hip, sdr_r, sdr_l
|
| 535 |
+
face_joint_indx = [11, 16, 5, 8]
|
| 536 |
+
# l_hip, r_hip
|
| 537 |
+
r_hip, l_hip = 11, 16
|
| 538 |
+
joints_num = 21
|
| 539 |
+
# ds_num = 8
|
| 540 |
+
data_dir = '../dataset/kit_mocap_dataset/joints/'
|
| 541 |
+
save_dir1 = '../dataset/kit_mocap_dataset/new_joints/'
|
| 542 |
+
save_dir2 = '../dataset/kit_mocap_dataset/new_joint_vecs/'
|
| 543 |
+
|
| 544 |
+
n_raw_offsets = torch.from_numpy(kit_raw_offsets)
|
| 545 |
+
kinematic_chain = kit_kinematic_chain
|
| 546 |
+
|
| 547 |
+
'''Get offsets of target skeleton'''
|
| 548 |
+
example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
|
| 549 |
+
example_data = example_data.reshape(len(example_data), -1, 3)
|
| 550 |
+
example_data = torch.from_numpy(example_data)
|
| 551 |
+
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
|
| 552 |
+
# (joints_num, 3)
|
| 553 |
+
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
|
| 554 |
+
# print(tgt_offsets)
|
| 555 |
+
|
| 556 |
+
source_list = os.listdir(data_dir)
|
| 557 |
+
frame_num = 0
|
| 558 |
+
'''Read source dataset'''
|
| 559 |
+
for source_file in tqdm(source_list):
|
| 560 |
+
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
|
| 561 |
+
try:
|
| 562 |
+
name = ''.join(source_file[:-7].split('_')) + '.npy'
|
| 563 |
+
data, ground_positions, positions, l_velocity = process_file(source_data, 0.05)
|
| 564 |
+
rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
|
| 565 |
+
if np.isnan(rec_ric_data.numpy()).any():
|
| 566 |
+
print(source_file)
|
| 567 |
+
continue
|
| 568 |
+
np.save(pjoin(save_dir1, name), rec_ric_data.squeeze().numpy())
|
| 569 |
+
np.save(pjoin(save_dir2, name), data)
|
| 570 |
+
frame_num += data.shape[0]
|
| 571 |
+
except Exception as e:
|
| 572 |
+
print(source_file)
|
| 573 |
+
print(e)
|
| 574 |
+
|
| 575 |
+
print('Total clips: %d, Frames: %d, Duration: %fm' %
|
| 576 |
+
(len(source_list), frame_num, frame_num / 12.5 / 60))
|
Evaluator_272/mld/data/humanml/utils/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/data/humanml/utils/metrics.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from scipy import linalg
|
| 3 |
+
|
| 4 |
+
def euclidean_distance_matrix(matrix1, matrix2):
|
| 5 |
+
"""
|
| 6 |
+
Params:
|
| 7 |
+
-- matrix1: N1 x D
|
| 8 |
+
-- matrix2: N2 x D
|
| 9 |
+
Returns:
|
| 10 |
+
-- dist: N1 x N2
|
| 11 |
+
dist[i, j] == distance(matrix1[i], matrix2[j])
|
| 12 |
+
"""
|
| 13 |
+
assert matrix1.shape[1] == matrix2.shape[1]
|
| 14 |
+
d1 = -2 * np.dot(matrix1, matrix2.T)
|
| 15 |
+
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True)
|
| 16 |
+
d3 = np.sum(np.square(matrix2), axis=1)
|
| 17 |
+
dists = np.sqrt(d1 + d2 + d3)
|
| 18 |
+
return dists
|
| 19 |
+
|
| 20 |
+
def calculate_top_k(mat, top_k):
|
| 21 |
+
size = mat.shape[0]
|
| 22 |
+
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
|
| 23 |
+
bool_mat = (mat == gt_mat)
|
| 24 |
+
correct_vec = False
|
| 25 |
+
top_k_list = []
|
| 26 |
+
for i in range(top_k):
|
| 27 |
+
correct_vec = (correct_vec | bool_mat[:, i])
|
| 28 |
+
top_k_list.append(correct_vec[:, None])
|
| 29 |
+
top_k_mat = np.concatenate(top_k_list, axis=1)
|
| 30 |
+
return top_k_mat
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
|
| 34 |
+
dist_mat = euclidean_distance_matrix(embedding1, embedding2)
|
| 35 |
+
argmax = np.argsort(dist_mat, axis=1)
|
| 36 |
+
top_k_mat = calculate_top_k(argmax, top_k)
|
| 37 |
+
if sum_all:
|
| 38 |
+
return top_k_mat.sum(axis=0)
|
| 39 |
+
else:
|
| 40 |
+
return top_k_mat
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def calculate_matching_score(embedding1, embedding2, sum_all=False):
|
| 44 |
+
assert len(embedding1.shape) == 2
|
| 45 |
+
assert embedding1.shape[0] == embedding2.shape[0]
|
| 46 |
+
assert embedding1.shape[1] == embedding2.shape[1]
|
| 47 |
+
|
| 48 |
+
dist = linalg.norm(embedding1 - embedding2, axis=1)
|
| 49 |
+
if sum_all:
|
| 50 |
+
return dist.sum(axis=0)
|
| 51 |
+
else:
|
| 52 |
+
return dist
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def calculate_activation_statistics(activations):
|
| 57 |
+
"""
|
| 58 |
+
Params:
|
| 59 |
+
-- activation: num_samples x dim_feat
|
| 60 |
+
Returns:
|
| 61 |
+
-- mu: dim_feat
|
| 62 |
+
-- sigma: dim_feat x dim_feat
|
| 63 |
+
"""
|
| 64 |
+
mu = np.mean(activations, axis=0)
|
| 65 |
+
cov = np.cov(activations, rowvar=False)
|
| 66 |
+
return mu, cov
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def calculate_diversity(activation, diversity_times):
|
| 70 |
+
assert len(activation.shape) == 2
|
| 71 |
+
assert activation.shape[0] > diversity_times
|
| 72 |
+
num_samples = activation.shape[0]
|
| 73 |
+
|
| 74 |
+
first_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
| 75 |
+
second_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
| 76 |
+
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
|
| 77 |
+
return dist.mean()
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def calculate_multimodality(activation, multimodality_times):
|
| 81 |
+
assert len(activation.shape) == 3
|
| 82 |
+
assert activation.shape[1] > multimodality_times
|
| 83 |
+
num_per_sent = activation.shape[1]
|
| 84 |
+
|
| 85 |
+
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
| 86 |
+
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
| 87 |
+
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
|
| 88 |
+
return dist.mean()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
| 92 |
+
"""Numpy implementation of the Frechet Distance.
|
| 93 |
+
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
|
| 94 |
+
and X_2 ~ N(mu_2, C_2) is
|
| 95 |
+
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
|
| 96 |
+
Stable version by Dougal J. Sutherland.
|
| 97 |
+
Params:
|
| 98 |
+
-- mu1 : Numpy array containing the activations of a layer of the
|
| 99 |
+
inception net (like returned by the function 'get_predictions')
|
| 100 |
+
for generated samples.
|
| 101 |
+
-- mu2 : The sample mean over activations, precalculated on an
|
| 102 |
+
representative dataset set.
|
| 103 |
+
-- sigma1: The covariance matrix over activations for generated samples.
|
| 104 |
+
-- sigma2: The covariance matrix over activations, precalculated on an
|
| 105 |
+
representative dataset set.
|
| 106 |
+
Returns:
|
| 107 |
+
-- : The Frechet Distance.
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
mu1 = np.atleast_1d(mu1)
|
| 111 |
+
mu2 = np.atleast_1d(mu2)
|
| 112 |
+
|
| 113 |
+
sigma1 = np.atleast_2d(sigma1)
|
| 114 |
+
sigma2 = np.atleast_2d(sigma2)
|
| 115 |
+
|
| 116 |
+
assert mu1.shape == mu2.shape, \
|
| 117 |
+
'Training and test mean vectors have different lengths'
|
| 118 |
+
assert sigma1.shape == sigma2.shape, \
|
| 119 |
+
'Training and test covariances have different dimensions'
|
| 120 |
+
|
| 121 |
+
diff = mu1 - mu2
|
| 122 |
+
|
| 123 |
+
# Product might be almost singular
|
| 124 |
+
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
| 125 |
+
if not np.isfinite(covmean).all():
|
| 126 |
+
msg = ('fid calculation produces singular product; '
|
| 127 |
+
'adding %s to diagonal of cov estimates') % eps
|
| 128 |
+
print(msg)
|
| 129 |
+
offset = np.eye(sigma1.shape[0]) * eps
|
| 130 |
+
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
| 131 |
+
|
| 132 |
+
# Numerical error might give slight imaginary component
|
| 133 |
+
if np.iscomplexobj(covmean):
|
| 134 |
+
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
| 135 |
+
m = np.max(np.abs(covmean.imag))
|
| 136 |
+
raise ValueError('Imaginary component {}'.format(m))
|
| 137 |
+
covmean = covmean.real
|
| 138 |
+
|
| 139 |
+
tr_covmean = np.trace(covmean)
|
| 140 |
+
|
| 141 |
+
return (diff.dot(diff) + np.trace(sigma1) +
|
| 142 |
+
np.trace(sigma2) - 2 * tr_covmean)
|
Evaluator_272/mld/data/humanml/utils/paramUtil.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
# Define a kinematic tree for the skeletal struture
|
| 4 |
+
kit_kinematic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]]
|
| 5 |
+
|
| 6 |
+
kit_raw_offsets = np.array(
|
| 7 |
+
[
|
| 8 |
+
[0, 0, 0],
|
| 9 |
+
[0, 1, 0],
|
| 10 |
+
[0, 1, 0],
|
| 11 |
+
[0, 1, 0],
|
| 12 |
+
[0, 1, 0],
|
| 13 |
+
[1, 0, 0],
|
| 14 |
+
[0, -1, 0],
|
| 15 |
+
[0, -1, 0],
|
| 16 |
+
[-1, 0, 0],
|
| 17 |
+
[0, -1, 0],
|
| 18 |
+
[0, -1, 0],
|
| 19 |
+
[1, 0, 0],
|
| 20 |
+
[0, -1, 0],
|
| 21 |
+
[0, -1, 0],
|
| 22 |
+
[0, 0, 1],
|
| 23 |
+
[0, 0, 1],
|
| 24 |
+
[-1, 0, 0],
|
| 25 |
+
[0, -1, 0],
|
| 26 |
+
[0, -1, 0],
|
| 27 |
+
[0, 0, 1],
|
| 28 |
+
[0, 0, 1]
|
| 29 |
+
]
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
t2m_raw_offsets = np.array([[0,0,0],
|
| 33 |
+
[1,0,0],
|
| 34 |
+
[-1,0,0],
|
| 35 |
+
[0,1,0],
|
| 36 |
+
[0,-1,0],
|
| 37 |
+
[0,-1,0],
|
| 38 |
+
[0,1,0],
|
| 39 |
+
[0,-1,0],
|
| 40 |
+
[0,-1,0],
|
| 41 |
+
[0,1,0],
|
| 42 |
+
[0,0,1],
|
| 43 |
+
[0,0,1],
|
| 44 |
+
[0,1,0],
|
| 45 |
+
[1,0,0],
|
| 46 |
+
[-1,0,0],
|
| 47 |
+
[0,0,1],
|
| 48 |
+
[0,-1,0],
|
| 49 |
+
[0,-1,0],
|
| 50 |
+
[0,-1,0],
|
| 51 |
+
[0,-1,0],
|
| 52 |
+
[0,-1,0],
|
| 53 |
+
[0,-1,0]])
|
| 54 |
+
|
| 55 |
+
t2m_kinematic_chain = [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
|
| 56 |
+
t2m_left_hand_chain = [[20, 22, 23, 24], [20, 34, 35, 36], [20, 25, 26, 27], [20, 31, 32, 33], [20, 28, 29, 30]]
|
| 57 |
+
t2m_right_hand_chain = [[21, 43, 44, 45], [21, 46, 47, 48], [21, 40, 41, 42], [21, 37, 38, 39], [21, 49, 50, 51]]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
kit_tgt_skel_id = '03950'
|
| 61 |
+
|
| 62 |
+
t2m_tgt_skel_id = '000021'
|
| 63 |
+
|
Evaluator_272/mld/data/humanml/utils/plot_script.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
# import cv2
|
| 3 |
+
from textwrap import wrap
|
| 4 |
+
|
| 5 |
+
import matplotlib
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import mpl_toolkits.mplot3d.axes3d as p3
|
| 8 |
+
import numpy as np
|
| 9 |
+
from matplotlib.animation import FFMpegFileWriter, FuncAnimation
|
| 10 |
+
from mpl_toolkits.mplot3d import Axes3D
|
| 11 |
+
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
| 12 |
+
|
| 13 |
+
import mld.data.humanml.utils.paramUtil as paramUtil
|
| 14 |
+
|
| 15 |
+
skeleton = paramUtil.t2m_kinematic_chain
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def list_cut_average(ll, intervals):
|
| 19 |
+
if intervals == 1:
|
| 20 |
+
return ll
|
| 21 |
+
|
| 22 |
+
bins = math.ceil(len(ll) * 1.0 / intervals)
|
| 23 |
+
ll_new = []
|
| 24 |
+
for i in range(bins):
|
| 25 |
+
l_low = intervals * i
|
| 26 |
+
l_high = l_low + intervals
|
| 27 |
+
l_high = l_high if l_high < len(ll) else len(ll)
|
| 28 |
+
ll_new.append(np.mean(ll[l_low:l_high]))
|
| 29 |
+
return ll_new
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def plot_3d_motion(save_path, joints, title, figsize=(3, 3), fps=120, radius=3, kinematic_tree=skeleton):
|
| 33 |
+
matplotlib.use('Agg')
|
| 34 |
+
title = '\n'.join(wrap(title, 20))
|
| 35 |
+
|
| 36 |
+
def init():
|
| 37 |
+
ax.set_xlim3d([-radius / 2, radius / 2])
|
| 38 |
+
ax.set_ylim3d([0, radius])
|
| 39 |
+
ax.set_zlim3d([-radius / 3., radius * 2 / 3.])
|
| 40 |
+
fig.suptitle(title, fontsize=10)
|
| 41 |
+
ax.grid(b=False)
|
| 42 |
+
|
| 43 |
+
def plot_xzPlane(minx, maxx, miny, minz, maxz):
|
| 44 |
+
verts = [
|
| 45 |
+
[minx, miny, minz],
|
| 46 |
+
[minx, miny, maxz],
|
| 47 |
+
[maxx, miny, maxz],
|
| 48 |
+
[maxx, miny, minz]
|
| 49 |
+
]
|
| 50 |
+
xz_plane = Poly3DCollection([verts])
|
| 51 |
+
xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
|
| 52 |
+
ax.add_collection3d(xz_plane)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
data = joints.copy().reshape(len(joints), -1, 3)
|
| 56 |
+
fig = plt.figure(figsize=figsize)
|
| 57 |
+
plt.tight_layout()
|
| 58 |
+
ax = p3.Axes3D(fig)
|
| 59 |
+
init()
|
| 60 |
+
MINS = data.min(axis=0).min(axis=0)
|
| 61 |
+
MAXS = data.max(axis=0).max(axis=0)
|
| 62 |
+
|
| 63 |
+
colors = ["#DD5A37", "#D69E00", "#B75A39", "#DD5A37", "#D69E00",
|
| 64 |
+
"#FF6D00", "#FF6D00", "#FF6D00", "#FF6D00", "#FF6D00",
|
| 65 |
+
"#DDB50E", "#DDB50E", "#DDB50E", "#DDB50E", "#DDB50E", ]
|
| 66 |
+
|
| 67 |
+
frame_number = data.shape[0]
|
| 68 |
+
|
| 69 |
+
height_offset = MINS[1]
|
| 70 |
+
data[:, :, 1] -= height_offset
|
| 71 |
+
trajec = data[:, 0, [0, 2]]
|
| 72 |
+
|
| 73 |
+
data[..., 0] -= data[:, 0:1, 0]
|
| 74 |
+
data[..., 2] -= data[:, 0:1, 2]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def update(index):
|
| 78 |
+
|
| 79 |
+
ax.view_init(elev=120, azim=-90)
|
| 80 |
+
ax.dist = 7.5
|
| 81 |
+
plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
|
| 82 |
+
MAXS[2] - trajec[index, 1])
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
for i, (chain, color) in enumerate(zip(kinematic_tree, colors)):
|
| 86 |
+
# print(color)
|
| 87 |
+
if i < 5:
|
| 88 |
+
linewidth = 4.0
|
| 89 |
+
else:
|
| 90 |
+
linewidth = 2.0
|
| 91 |
+
ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,
|
| 92 |
+
color=color)
|
| 93 |
+
|
| 94 |
+
plt.axis('off')
|
| 95 |
+
ax.set_xticklabels([])
|
| 96 |
+
ax.set_yticklabels([])
|
| 97 |
+
ax.set_zticklabels([])
|
| 98 |
+
|
| 99 |
+
ani = FuncAnimation(fig, update, frames=frame_number,
|
| 100 |
+
interval=1000 / fps, repeat=False)
|
| 101 |
+
|
| 102 |
+
ani.save(save_path, fps=fps)
|
| 103 |
+
plt.close()
|
Evaluator_272/mld/data/humanml/utils/utils.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
# import cv2
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import paramUtil
|
| 6 |
+
import math
|
| 7 |
+
import time
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
from scipy.ndimage import gaussian_filter
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def mkdir(path):
|
| 13 |
+
if not os.path.exists(path):
|
| 14 |
+
os.makedirs(path)
|
| 15 |
+
|
| 16 |
+
COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
|
| 17 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
|
| 18 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
| 19 |
+
|
| 20 |
+
MISSING_VALUE = -1
|
| 21 |
+
|
| 22 |
+
def save_image(image_numpy, image_path):
|
| 23 |
+
img_pil = Image.fromarray(image_numpy)
|
| 24 |
+
img_pil.save(image_path)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def save_logfile(log_loss, save_path):
|
| 28 |
+
with open(save_path, 'wt') as f:
|
| 29 |
+
for k, v in log_loss.items():
|
| 30 |
+
w_line = k
|
| 31 |
+
for digit in v:
|
| 32 |
+
w_line += ' %.3f' % digit
|
| 33 |
+
f.write(w_line + '\n')
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def print_current_loss(start_time, niter_state, losses, epoch=None, sub_epoch=None,
|
| 37 |
+
inner_iter=None, tf_ratio=None, sl_steps=None):
|
| 38 |
+
|
| 39 |
+
def as_minutes(s):
|
| 40 |
+
m = math.floor(s / 60)
|
| 41 |
+
s -= m * 60
|
| 42 |
+
return '%dm %ds' % (m, s)
|
| 43 |
+
|
| 44 |
+
def time_since(since, percent):
|
| 45 |
+
now = time.time()
|
| 46 |
+
s = now - since
|
| 47 |
+
es = s / percent
|
| 48 |
+
rs = es - s
|
| 49 |
+
return '%s (- %s)' % (as_minutes(s), as_minutes(rs))
|
| 50 |
+
|
| 51 |
+
if epoch is not None:
|
| 52 |
+
print('epoch: %3d niter: %6d sub_epoch: %2d inner_iter: %4d' % (epoch, niter_state, sub_epoch, inner_iter), end=" ")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
now = time.time()
|
| 56 |
+
message = '%s'%(as_minutes(now - start_time))
|
| 57 |
+
|
| 58 |
+
for k, v in losses.items():
|
| 59 |
+
message += ' %s: %.4f ' % (k, v)
|
| 60 |
+
message += ' sl_length:%2d tf_ratio:%.2f'%(sl_steps, tf_ratio)
|
| 61 |
+
print(message)
|
| 62 |
+
|
| 63 |
+
def print_current_loss_decomp(start_time, niter_state, total_niters, losses, epoch=None, inner_iter=None):
|
| 64 |
+
|
| 65 |
+
def as_minutes(s):
|
| 66 |
+
m = math.floor(s / 60)
|
| 67 |
+
s -= m * 60
|
| 68 |
+
return '%dm %ds' % (m, s)
|
| 69 |
+
|
| 70 |
+
def time_since(since, percent):
|
| 71 |
+
now = time.time()
|
| 72 |
+
s = now - since
|
| 73 |
+
es = s / percent
|
| 74 |
+
rs = es - s
|
| 75 |
+
return '%s (- %s)' % (as_minutes(s), as_minutes(rs))
|
| 76 |
+
|
| 77 |
+
print('epoch: %03d inner_iter: %5d' % (epoch, inner_iter), end=" ")
|
| 78 |
+
# now = time.time()
|
| 79 |
+
message = '%s niter: %07d completed: %3d%%)'%(time_since(start_time, niter_state / total_niters), niter_state, niter_state / total_niters * 100)
|
| 80 |
+
for k, v in losses.items():
|
| 81 |
+
message += ' %s: %.4f ' % (k, v)
|
| 82 |
+
print(message)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def compose_gif_img_list(img_list, fp_out, duration):
|
| 86 |
+
img, *imgs = [Image.fromarray(np.array(image)) for image in img_list]
|
| 87 |
+
img.save(fp=fp_out, format='GIF', append_images=imgs, optimize=False,
|
| 88 |
+
save_all=True, loop=0, duration=duration)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def save_images(visuals, image_path):
|
| 92 |
+
if not os.path.exists(image_path):
|
| 93 |
+
os.makedirs(image_path)
|
| 94 |
+
|
| 95 |
+
for i, (label, img_numpy) in enumerate(visuals.items()):
|
| 96 |
+
img_name = '%d_%s.jpg' % (i, label)
|
| 97 |
+
save_path = os.path.join(image_path, img_name)
|
| 98 |
+
save_image(img_numpy, save_path)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def save_images_test(visuals, image_path, from_name, to_name):
|
| 102 |
+
if not os.path.exists(image_path):
|
| 103 |
+
os.makedirs(image_path)
|
| 104 |
+
|
| 105 |
+
for i, (label, img_numpy) in enumerate(visuals.items()):
|
| 106 |
+
img_name = "%s_%s_%s" % (from_name, to_name, label)
|
| 107 |
+
save_path = os.path.join(image_path, img_name)
|
| 108 |
+
save_image(img_numpy, save_path)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def compose_and_save_img(img_list, save_dir, img_name, col=4, row=1, img_size=(256, 200)):
|
| 112 |
+
# print(col, row)
|
| 113 |
+
compose_img = compose_image(img_list, col, row, img_size)
|
| 114 |
+
if not os.path.exists(save_dir):
|
| 115 |
+
os.makedirs(save_dir)
|
| 116 |
+
img_path = os.path.join(save_dir, img_name)
|
| 117 |
+
compose_img.save(img_path)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def compose_image(img_list, col, row, img_size):
|
| 121 |
+
to_image = Image.new('RGB', (col * img_size[0], row * img_size[1]))
|
| 122 |
+
for y in range(0, row):
|
| 123 |
+
for x in range(0, col):
|
| 124 |
+
from_img = Image.fromarray(img_list[y * col + x])
|
| 125 |
+
|
| 126 |
+
paste_area = (x * img_size[0], y*img_size[1],
|
| 127 |
+
(x + 1) * img_size[0], (y + 1) * img_size[1])
|
| 128 |
+
to_image.paste(from_img, paste_area)
|
| 129 |
+
return to_image
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def plot_loss_curve(losses, save_path, intervals=500):
|
| 133 |
+
plt.figure(figsize=(10, 5))
|
| 134 |
+
plt.title("Loss During Training")
|
| 135 |
+
for key in losses.keys():
|
| 136 |
+
plt.plot(list_cut_average(losses[key], intervals), label=key)
|
| 137 |
+
plt.xlabel("Iterations/" + str(intervals))
|
| 138 |
+
plt.ylabel("Loss")
|
| 139 |
+
plt.legend()
|
| 140 |
+
plt.savefig(save_path)
|
| 141 |
+
plt.show()
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def list_cut_average(ll, intervals):
|
| 145 |
+
if intervals == 1:
|
| 146 |
+
return ll
|
| 147 |
+
|
| 148 |
+
bins = math.ceil(len(ll) * 1.0 / intervals)
|
| 149 |
+
ll_new = []
|
| 150 |
+
for i in range(bins):
|
| 151 |
+
l_low = intervals * i
|
| 152 |
+
l_high = l_low + intervals
|
| 153 |
+
l_high = l_high if l_high < len(ll) else len(ll)
|
| 154 |
+
ll_new.append(np.mean(ll[l_low:l_high]))
|
| 155 |
+
return ll_new
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def motion_temporal_filter(motion, sigma=1):
|
| 159 |
+
motion = motion.reshape(motion.shape[0], -1)
|
| 160 |
+
for i in range(motion.shape[1]):
|
| 161 |
+
motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
|
| 162 |
+
return motion.reshape(motion.shape[0], -1, 3)
|
| 163 |
+
|
Evaluator_272/mld/data/humanml/utils/word_vectorizer.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pickle
|
| 3 |
+
from os.path import join as pjoin
|
| 4 |
+
|
| 5 |
+
POS_enumerator = {
|
| 6 |
+
'VERB': 0,
|
| 7 |
+
'NOUN': 1,
|
| 8 |
+
'DET': 2,
|
| 9 |
+
'ADP': 3,
|
| 10 |
+
'NUM': 4,
|
| 11 |
+
'AUX': 5,
|
| 12 |
+
'PRON': 6,
|
| 13 |
+
'ADJ': 7,
|
| 14 |
+
'ADV': 8,
|
| 15 |
+
'Loc_VIP': 9,
|
| 16 |
+
'Body_VIP': 10,
|
| 17 |
+
'Obj_VIP': 11,
|
| 18 |
+
'Act_VIP': 12,
|
| 19 |
+
'Desc_VIP': 13,
|
| 20 |
+
'OTHER': 14,
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
Loc_list = ('left', 'right', 'clockwise', 'counterclockwise', 'anticlockwise', 'forward', 'back', 'backward',
|
| 24 |
+
'up', 'down', 'straight', 'curve')
|
| 25 |
+
|
| 26 |
+
Body_list = ('arm', 'chin', 'foot', 'feet', 'face', 'hand', 'mouth', 'leg', 'waist', 'eye', 'knee', 'shoulder', 'thigh')
|
| 27 |
+
|
| 28 |
+
Obj_List = ('stair', 'dumbbell', 'chair', 'window', 'floor', 'car', 'ball', 'handrail', 'baseball', 'basketball')
|
| 29 |
+
|
| 30 |
+
Act_list = ('walk', 'run', 'swing', 'pick', 'bring', 'kick', 'put', 'squat', 'throw', 'hop', 'dance', 'jump', 'turn',
|
| 31 |
+
'stumble', 'dance', 'stop', 'sit', 'lift', 'lower', 'raise', 'wash', 'stand', 'kneel', 'stroll',
|
| 32 |
+
'rub', 'bend', 'balance', 'flap', 'jog', 'shuffle', 'lean', 'rotate', 'spin', 'spread', 'climb')
|
| 33 |
+
|
| 34 |
+
Desc_list = ('slowly', 'carefully', 'fast', 'careful', 'slow', 'quickly', 'happy', 'angry', 'sad', 'happily',
|
| 35 |
+
'angrily', 'sadly')
|
| 36 |
+
|
| 37 |
+
VIP_dict = {
|
| 38 |
+
'Loc_VIP': Loc_list,
|
| 39 |
+
'Body_VIP': Body_list,
|
| 40 |
+
'Obj_VIP': Obj_List,
|
| 41 |
+
'Act_VIP': Act_list,
|
| 42 |
+
'Desc_VIP': Desc_list,
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class WordVectorizer(object):
|
| 47 |
+
def __init__(self, meta_root, prefix, text_encode_way):
|
| 48 |
+
|
| 49 |
+
self.text_encode_way = text_encode_way
|
| 50 |
+
|
| 51 |
+
vectors = np.load(pjoin(meta_root, '%s_data.npy'%prefix))
|
| 52 |
+
words = pickle.load(open(pjoin(meta_root, '%s_words.pkl'%prefix), 'rb'))
|
| 53 |
+
word2idx = pickle.load(open(pjoin(meta_root, '%s_idx.pkl'%prefix), 'rb'))
|
| 54 |
+
self.word2vec = {w: vectors[word2idx[w]] for w in words}
|
| 55 |
+
|
| 56 |
+
if 'glove_6B' in self.text_encode_way:
|
| 57 |
+
from torchtext.vocab import GloVe
|
| 58 |
+
glove_6b = GloVe(name='6B', dim=300)
|
| 59 |
+
self.word2vec_glove_6b = glove_6b.get_vecs_by_tokens
|
| 60 |
+
|
| 61 |
+
def _get_pos_ohot(self, pos):
|
| 62 |
+
pos_vec = np.zeros(len(POS_enumerator))
|
| 63 |
+
if pos in POS_enumerator:
|
| 64 |
+
pos_vec[POS_enumerator[pos]] = 1
|
| 65 |
+
else:
|
| 66 |
+
pos_vec[POS_enumerator['OTHER']] = 1
|
| 67 |
+
return pos_vec
|
| 68 |
+
|
| 69 |
+
def __len__(self):
|
| 70 |
+
return len(self.word2vec)
|
| 71 |
+
|
| 72 |
+
def __getitem__(self, item):
|
| 73 |
+
word, pos = item.split('/')
|
| 74 |
+
if 'given_glove' in self.text_encode_way:
|
| 75 |
+
if word in self.word2vec:
|
| 76 |
+
word_vec = self.word2vec[word]
|
| 77 |
+
vip_pos = None
|
| 78 |
+
for key, values in VIP_dict.items():
|
| 79 |
+
if word in values:
|
| 80 |
+
vip_pos = key
|
| 81 |
+
break
|
| 82 |
+
if vip_pos is not None:
|
| 83 |
+
pos_vec = self._get_pos_ohot(vip_pos)
|
| 84 |
+
else:
|
| 85 |
+
pos_vec = self._get_pos_ohot(pos)
|
| 86 |
+
else:
|
| 87 |
+
word_vec = self.word2vec['unk']
|
| 88 |
+
pos_vec = self._get_pos_ohot('OTHER')
|
| 89 |
+
|
| 90 |
+
elif 'glove_6B' in self.text_encode_way:
|
| 91 |
+
word_vec = self.word2vec_glove_6b([word]).squeeze()
|
| 92 |
+
|
| 93 |
+
if word in self.word2vec:
|
| 94 |
+
vip_pos = None
|
| 95 |
+
for key, values in VIP_dict.items():
|
| 96 |
+
if word in values:
|
| 97 |
+
vip_pos = key
|
| 98 |
+
break
|
| 99 |
+
if vip_pos is not None:
|
| 100 |
+
pos_vec = self._get_pos_ohot(vip_pos)
|
| 101 |
+
else:
|
| 102 |
+
pos_vec = self._get_pos_ohot(pos)
|
| 103 |
+
else:
|
| 104 |
+
pos_vec = self._get_pos_ohot('OTHER')
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
return word_vec, pos_vec
|
| 109 |
+
|
| 110 |
+
class WordVectorizer_only_text_token(object):
|
| 111 |
+
def __init__(self, meta_root, prefix, text_encode_way):
|
| 112 |
+
|
| 113 |
+
self.text_encode_way = text_encode_way
|
| 114 |
+
|
| 115 |
+
vectors = np.load(pjoin(meta_root, '%s_data.npy'%prefix))
|
| 116 |
+
words = pickle.load(open(pjoin(meta_root, '%s_words.pkl'%prefix), 'rb'))
|
| 117 |
+
word2idx = pickle.load(open(pjoin(meta_root, '%s_idx.pkl'%prefix), 'rb'))
|
| 118 |
+
self.word2vec = {w: vectors[word2idx[w]] for w in words}
|
| 119 |
+
|
| 120 |
+
if 'glove_6B' in self.text_encode_way:
|
| 121 |
+
from torchtext.vocab import GloVe
|
| 122 |
+
glove_6b = GloVe(name='6B', dim=300)
|
| 123 |
+
self.word2vec_glove_6b = glove_6b.get_vecs_by_tokens
|
| 124 |
+
|
| 125 |
+
def __len__(self):
|
| 126 |
+
return len(self.word2vec)
|
| 127 |
+
|
| 128 |
+
def __getitem__(self, item):
|
| 129 |
+
word = item
|
| 130 |
+
|
| 131 |
+
if 'given_glove' in self.text_encode_way:
|
| 132 |
+
if word in self.word2vec:
|
| 133 |
+
word_vec = self.word2vec[word]
|
| 134 |
+
else:
|
| 135 |
+
word_vec = self.word2vec['unk']
|
| 136 |
+
|
| 137 |
+
elif 'glove_6B' in self.text_encode_way:
|
| 138 |
+
word_vec = self.word2vec_glove_6b([word]).squeeze()
|
| 139 |
+
|
| 140 |
+
return word_vec
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
Evaluator_272/mld/data/sampling/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .base import FrameSampler
|
| 2 |
+
from .framerate import subsample, upsample
|
Evaluator_272/mld/data/sampling/base.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .frames import get_frameix_from_data_index
|
| 2 |
+
|
| 3 |
+
class FrameSampler:
|
| 4 |
+
def __init__(self, sampling="conseq", sampling_step=1, request_frames=None,threshold_reject=0.75,max_len=1000,min_len=10):
|
| 5 |
+
self.sampling = sampling
|
| 6 |
+
|
| 7 |
+
self.sampling_step = sampling_step
|
| 8 |
+
self.request_frames = request_frames
|
| 9 |
+
self.threshold_reject = threshold_reject
|
| 10 |
+
self.max_len = max_len
|
| 11 |
+
self.min_len = min_len
|
| 12 |
+
|
| 13 |
+
def __call__(self, num_frames):
|
| 14 |
+
|
| 15 |
+
return get_frameix_from_data_index(num_frames,
|
| 16 |
+
self.request_frames,
|
| 17 |
+
self.sampling,
|
| 18 |
+
self.sampling_step)
|
| 19 |
+
|
| 20 |
+
def accept(self, duration):
|
| 21 |
+
# Outputs have original lengths
|
| 22 |
+
# Check if it is too long
|
| 23 |
+
if self.request_frames is None:
|
| 24 |
+
if duration > self.max_len:
|
| 25 |
+
return False
|
| 26 |
+
elif duration < self.min_len:
|
| 27 |
+
return False
|
| 28 |
+
else:
|
| 29 |
+
# Reject sample if the length is
|
| 30 |
+
# too little relative to
|
| 31 |
+
# the request frames
|
| 32 |
+
min_number = self.threshold_reject * self.request_frames
|
| 33 |
+
if duration < min_number:
|
| 34 |
+
return False
|
| 35 |
+
return True
|
| 36 |
+
|
| 37 |
+
def get(self, key, default=None):
|
| 38 |
+
return getattr(self, key, default)
|
| 39 |
+
|
| 40 |
+
def __getitem__(self, key):
|
| 41 |
+
return getattr(self, key)
|
Evaluator_272/mld/data/sampling/framerate.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
def subsample(num_frames, last_framerate, new_framerate):
|
| 4 |
+
step = int(last_framerate / new_framerate)
|
| 5 |
+
assert step >= 1
|
| 6 |
+
frames = np.arange(0, num_frames, step)
|
| 7 |
+
return frames
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def upsample(motion, last_framerate, new_framerate):
|
| 12 |
+
step = int(new_framerate / last_framerate)
|
| 13 |
+
assert step >= 1
|
| 14 |
+
|
| 15 |
+
# Alpha blending => interpolation
|
| 16 |
+
alpha = np.linspace(0, 1, step+1)
|
| 17 |
+
last = np.einsum("l,...->l...", 1-alpha, motion[:-1])
|
| 18 |
+
new = np.einsum("l,...->l...", alpha, motion[1:])
|
| 19 |
+
|
| 20 |
+
chuncks = (last + new)[:-1]
|
| 21 |
+
output = np.concatenate(chuncks.swapaxes(1, 0))
|
| 22 |
+
# Don't forget the last one
|
| 23 |
+
output = np.concatenate((output, motion[[-1]]))
|
| 24 |
+
return output
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
if __name__ == "__main__":
|
| 28 |
+
motion = np.arange(105)
|
| 29 |
+
submotion = motion[subsample(len(motion), 100.0, 12.5)]
|
| 30 |
+
newmotion = upsample(submotion, 12.5, 100)
|
| 31 |
+
|
| 32 |
+
print(newmotion)
|
Evaluator_272/mld/data/sampling/frames.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy import ndarray as Array
|
| 5 |
+
import random
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_frameix_from_data_index(num_frames: int,
|
| 9 |
+
request_frames: Optional[int],
|
| 10 |
+
sampling: str = "conseq",
|
| 11 |
+
sampling_step: int = 1) -> Array:
|
| 12 |
+
nframes = num_frames
|
| 13 |
+
|
| 14 |
+
if request_frames is None:
|
| 15 |
+
frame_ix = np.arange(nframes)
|
| 16 |
+
else:
|
| 17 |
+
|
| 18 |
+
if request_frames > nframes:
|
| 19 |
+
fair = False # True
|
| 20 |
+
if fair:
|
| 21 |
+
# distills redundancy everywhere
|
| 22 |
+
choices = np.random.choice(range(nframes),
|
| 23 |
+
request_frames,
|
| 24 |
+
replace=True)
|
| 25 |
+
frame_ix = sorted(choices)
|
| 26 |
+
else:
|
| 27 |
+
# adding the last frame until done
|
| 28 |
+
ntoadd = max(0, request_frames - nframes)
|
| 29 |
+
lastframe = nframes - 1
|
| 30 |
+
padding = lastframe * np.ones(ntoadd, dtype=int)
|
| 31 |
+
frame_ix = np.concatenate((np.arange(0, nframes),
|
| 32 |
+
padding))
|
| 33 |
+
|
| 34 |
+
elif sampling in ["conseq", "random_conseq"]:
|
| 35 |
+
step_max = (nframes - 1) // (request_frames - 1)
|
| 36 |
+
if sampling == "conseq":
|
| 37 |
+
if sampling_step == -1 or sampling_step * (request_frames - 1) >= nframes:
|
| 38 |
+
step = step_max
|
| 39 |
+
else:
|
| 40 |
+
step = sampling_step
|
| 41 |
+
elif sampling == "random_conseq":
|
| 42 |
+
step = random.randint(1, step_max)
|
| 43 |
+
|
| 44 |
+
lastone = step * (request_frames - 1)
|
| 45 |
+
shift_max = nframes - lastone - 1
|
| 46 |
+
shift = random.randint(0, max(0, shift_max - 1))
|
| 47 |
+
frame_ix = shift + np.arange(0, lastone + 1, step)
|
| 48 |
+
|
| 49 |
+
elif sampling == "random":
|
| 50 |
+
choices = np.random.choice(range(nframes),
|
| 51 |
+
request_frames,
|
| 52 |
+
replace=False)
|
| 53 |
+
frame_ix = sorted(choices)
|
| 54 |
+
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError("Sampling not recognized.")
|
| 57 |
+
|
| 58 |
+
return frame_ix
|
Evaluator_272/mld/data/utils.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def lengths_to_mask(lengths):
|
| 5 |
+
max_len = max(lengths)
|
| 6 |
+
mask = torch.arange(max_len, device=lengths.device).expand(
|
| 7 |
+
len(lengths), max_len) < lengths.unsqueeze(1)
|
| 8 |
+
return mask
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def collate_tensors(batch):
|
| 12 |
+
dims = batch[0].dim()
|
| 13 |
+
max_size = [max([b.size(i) for b in batch]) for i in range(dims)]
|
| 14 |
+
size = (len(batch), ) + tuple(max_size)
|
| 15 |
+
canvas = batch[0].new_zeros(size=size)
|
| 16 |
+
for i, b in enumerate(batch):
|
| 17 |
+
sub_tensor = canvas[i]
|
| 18 |
+
for d in range(dims):
|
| 19 |
+
sub_tensor = sub_tensor.narrow(d, 0, b.size(d))
|
| 20 |
+
sub_tensor.add_(b)
|
| 21 |
+
return canvas
|
| 22 |
+
|
| 23 |
+
def mld_collate(batch):
|
| 24 |
+
notnone_batches = [b for b in batch if b is not None]
|
| 25 |
+
notnone_batches.sort(key=lambda x: x[2], reverse=True)
|
| 26 |
+
adapted_batch = {
|
| 27 |
+
"motion":
|
| 28 |
+
collate_tensors([torch.tensor(b[1]).float() for b in notnone_batches]),
|
| 29 |
+
"text": [b[0] for b in notnone_batches],
|
| 30 |
+
"length": [b[2] for b in notnone_batches],
|
| 31 |
+
"retrieval_name": [b[3] for b in notnone_batches]
|
| 32 |
+
}
|
| 33 |
+
return adapted_batch
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
Evaluator_272/mld/launch/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/launch/blender.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Fix blender path
|
| 2 |
+
import sys
|
| 3 |
+
import os
|
| 4 |
+
# local packages
|
| 5 |
+
sys.path.append(os.path.expanduser("~/.local/lib/python3.9/site-packages"))
|
| 6 |
+
import bpy
|
| 7 |
+
import os
|
| 8 |
+
from argparse import ArgumentParser
|
| 9 |
+
|
| 10 |
+
# Monkey patch argparse such that
|
| 11 |
+
# blender / python / hydra parsing works
|
| 12 |
+
def parse_args(self, args=None, namespace=None):
|
| 13 |
+
if args is not None:
|
| 14 |
+
return self.parse_args_bak(args=args, namespace=namespace)
|
| 15 |
+
try:
|
| 16 |
+
idx = sys.argv.index("--")
|
| 17 |
+
args = sys.argv[idx+1:] # the list after '--'
|
| 18 |
+
except ValueError as e: # '--' not in the list:
|
| 19 |
+
args = []
|
| 20 |
+
return self.parse_args_bak(args=args, namespace=namespace)
|
| 21 |
+
|
| 22 |
+
setattr(ArgumentParser, 'parse_args_bak', ArgumentParser.parse_args)
|
| 23 |
+
setattr(ArgumentParser, 'parse_args', parse_args)
|
Evaluator_272/mld/launch/prepare.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import warnings
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import hydra
|
| 6 |
+
from mld.tools.runid import generate_id
|
| 7 |
+
from omegaconf import OmegaConf
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Local paths
|
| 11 |
+
def code_path(path=""):
|
| 12 |
+
code_dir = hydra.utils.get_original_cwd()
|
| 13 |
+
code_dir = Path(code_dir)
|
| 14 |
+
return str(code_dir / path)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def working_path(path):
|
| 18 |
+
return str(Path(os.getcwd()) / path)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# fix the id for this run
|
| 22 |
+
ID = generate_id()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def generate_id():
|
| 26 |
+
return ID
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_last_checkpoint(path, ckpt_name="last.ckpt"):
|
| 30 |
+
output_dir = Path(hydra.utils.to_absolute_path(path))
|
| 31 |
+
last_ckpt_path = output_dir / "checkpoints" / ckpt_name
|
| 32 |
+
return str(last_ckpt_path)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def get_kitname(load_amass_data: bool, load_with_rot: bool):
|
| 36 |
+
if not load_amass_data:
|
| 37 |
+
return "kit-mmm-xyz"
|
| 38 |
+
if load_amass_data and not load_with_rot:
|
| 39 |
+
return "kit-amass-xyz"
|
| 40 |
+
if load_amass_data and load_with_rot:
|
| 41 |
+
return "kit-amass-rot"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
OmegaConf.register_new_resolver("code_path", code_path)
|
| 45 |
+
OmegaConf.register_new_resolver("working_path", working_path)
|
| 46 |
+
OmegaConf.register_new_resolver("generate_id", generate_id)
|
| 47 |
+
OmegaConf.register_new_resolver("absolute_path", hydra.utils.to_absolute_path)
|
| 48 |
+
OmegaConf.register_new_resolver("get_last_checkpoint", get_last_checkpoint)
|
| 49 |
+
OmegaConf.register_new_resolver("get_kitname", get_kitname)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Remove warnings
|
| 53 |
+
warnings.filterwarnings(
|
| 54 |
+
"ignore", ".*Trying to infer the `batch_size` from an ambiguous collection.*"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
warnings.filterwarnings(
|
| 58 |
+
"ignore", ".*does not have many workers which may be a bottleneck*"
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
warnings.filterwarnings(
|
| 62 |
+
"ignore", ".*Our suggested max number of worker in current system is*"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
os.environ["NUMEXPR_MAX_THREADS"] = "24"
|
Evaluator_272/mld/launch/tools.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from omegaconf import DictConfig, OmegaConf
|
| 3 |
+
import hydra
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def resolve_cfg_path(cfg: DictConfig):
|
| 8 |
+
working_dir = os.getcwd()
|
| 9 |
+
cfg.working_dir = working_dir
|
Evaluator_272/mld/models/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/models/architectures/__init__.py
ADDED
|
File without changes
|
Evaluator_272/mld/models/architectures/actor_vae.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Union
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch import Tensor, nn
|
| 6 |
+
from torch.distributions.distribution import Distribution
|
| 7 |
+
from mld.utils.temos_utils import lengths_to_mask
|
| 8 |
+
from mld.models.operator import PositionalEncoding
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ActorVae(nn.Module):
|
| 12 |
+
|
| 13 |
+
def __init__(self,
|
| 14 |
+
ablation,
|
| 15 |
+
nfeats: int,
|
| 16 |
+
latent_dim: list = [1, 256],
|
| 17 |
+
ff_size: int = 1024,
|
| 18 |
+
num_layers: int = 9,
|
| 19 |
+
num_heads: int = 4,
|
| 20 |
+
dropout: float = 0.1,
|
| 21 |
+
is_vae: bool = True,
|
| 22 |
+
activation: str = "gelu",
|
| 23 |
+
position_embedding: str = "learned",
|
| 24 |
+
**kwargs) -> None:
|
| 25 |
+
|
| 26 |
+
super().__init__()
|
| 27 |
+
|
| 28 |
+
self.latent_size = latent_dim[0]
|
| 29 |
+
self.latent_dim = latent_dim[-1]
|
| 30 |
+
self.is_vae = is_vae
|
| 31 |
+
input_feats = nfeats
|
| 32 |
+
output_feats = nfeats
|
| 33 |
+
|
| 34 |
+
self.encoder = ActorAgnosticEncoder(nfeats=input_feats,
|
| 35 |
+
vae=True,
|
| 36 |
+
latent_dim=self.latent_dim,
|
| 37 |
+
ff_size=ff_size,
|
| 38 |
+
num_layers=num_layers,
|
| 39 |
+
num_heads=num_heads,
|
| 40 |
+
dropout=dropout,
|
| 41 |
+
activation=activation,
|
| 42 |
+
**kwargs)
|
| 43 |
+
|
| 44 |
+
self.decoder = ActorAgnosticDecoder(nfeats=output_feats,
|
| 45 |
+
vae=True,
|
| 46 |
+
latent_dim=self.latent_dim,
|
| 47 |
+
ff_size=ff_size,
|
| 48 |
+
num_layers=num_layers,
|
| 49 |
+
num_heads=num_heads,
|
| 50 |
+
dropout=dropout,
|
| 51 |
+
activation=activation,
|
| 52 |
+
**kwargs)
|
| 53 |
+
|
| 54 |
+
def forward(self, features: Tensor, lengths: Optional[List[int]] = None):
|
| 55 |
+
# Temp
|
| 56 |
+
# Todo
|
| 57 |
+
# remove and test this function
|
| 58 |
+
print("Should Not enter here")
|
| 59 |
+
|
| 60 |
+
z, dist = self.encode(features, lengths)
|
| 61 |
+
feats_rst = self.decode(z, lengths)
|
| 62 |
+
return feats_rst, z, dist
|
| 63 |
+
|
| 64 |
+
def encode(
|
| 65 |
+
self,
|
| 66 |
+
features: Tensor,
|
| 67 |
+
lengths: Optional[List[int]] = None
|
| 68 |
+
) -> Union[Tensor, Distribution]:
|
| 69 |
+
|
| 70 |
+
dist = self.encoder(features, lengths)
|
| 71 |
+
if self.is_vae:
|
| 72 |
+
latent = sample_from_distribution(dist)
|
| 73 |
+
else:
|
| 74 |
+
latent = dist.unsqueeze(0)
|
| 75 |
+
|
| 76 |
+
return latent, dist
|
| 77 |
+
|
| 78 |
+
def decode(self, z: Tensor, lengths: List[int]):
|
| 79 |
+
|
| 80 |
+
feats = self.decoder(z, lengths)
|
| 81 |
+
return feats
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class ActorAgnosticEncoder(nn.Module):
|
| 85 |
+
|
| 86 |
+
def __init__(self,
|
| 87 |
+
nfeats: int,
|
| 88 |
+
vae: bool,
|
| 89 |
+
latent_dim: int = 256,
|
| 90 |
+
ff_size: int = 1024,
|
| 91 |
+
num_layers: int = 4,
|
| 92 |
+
num_heads: int = 4,
|
| 93 |
+
dropout: float = 0.1,
|
| 94 |
+
activation: str = "gelu",
|
| 95 |
+
**kwargs) -> None:
|
| 96 |
+
super().__init__()
|
| 97 |
+
|
| 98 |
+
input_feats = nfeats
|
| 99 |
+
self.vae = vae
|
| 100 |
+
self.skel_embedding = nn.Linear(input_feats, latent_dim)
|
| 101 |
+
|
| 102 |
+
# Action agnostic: only one set of params
|
| 103 |
+
if vae:
|
| 104 |
+
self.mu_token = nn.Parameter(torch.randn(latent_dim))
|
| 105 |
+
self.logvar_token = nn.Parameter(torch.randn(latent_dim))
|
| 106 |
+
else:
|
| 107 |
+
self.emb_token = nn.Parameter(torch.randn(latent_dim))
|
| 108 |
+
|
| 109 |
+
self.sequence_pos_encoding = PositionalEncoding(latent_dim, dropout)
|
| 110 |
+
|
| 111 |
+
seq_trans_encoder_layer = nn.TransformerEncoderLayer(
|
| 112 |
+
d_model=latent_dim,
|
| 113 |
+
nhead=num_heads,
|
| 114 |
+
dim_feedforward=ff_size,
|
| 115 |
+
dropout=dropout,
|
| 116 |
+
activation=activation)
|
| 117 |
+
|
| 118 |
+
self.seqTransEncoder = nn.TransformerEncoder(seq_trans_encoder_layer,
|
| 119 |
+
num_layers=num_layers)
|
| 120 |
+
|
| 121 |
+
def forward(
|
| 122 |
+
self,
|
| 123 |
+
features: Tensor,
|
| 124 |
+
lengths: Optional[List[int]] = None
|
| 125 |
+
) -> Union[Tensor, Distribution]:
|
| 126 |
+
if lengths is None:
|
| 127 |
+
lengths = [len(feature) for feature in features]
|
| 128 |
+
|
| 129 |
+
device = features.device
|
| 130 |
+
|
| 131 |
+
bs, nframes, nfeats = features.shape
|
| 132 |
+
mask = lengths_to_mask(lengths, device)
|
| 133 |
+
|
| 134 |
+
x = features
|
| 135 |
+
# Embed each human poses into latent vectors
|
| 136 |
+
x = self.skel_embedding(x)
|
| 137 |
+
|
| 138 |
+
# Switch sequence and batch_size because the input of
|
| 139 |
+
# Pytorch Transformer is [Sequence, Batch size, ...]
|
| 140 |
+
x = x.permute(1, 0, 2) # now it is [nframes, bs, latent_dim]
|
| 141 |
+
|
| 142 |
+
# Each batch has its own set of tokens
|
| 143 |
+
if self.vae:
|
| 144 |
+
mu_token = torch.tile(self.mu_token, (bs, )).reshape(bs, -1)
|
| 145 |
+
logvar_token = torch.tile(self.logvar_token,
|
| 146 |
+
(bs, )).reshape(bs, -1)
|
| 147 |
+
|
| 148 |
+
# adding the distribution tokens for all sequences
|
| 149 |
+
xseq = torch.cat((mu_token[None], logvar_token[None], x), 0)
|
| 150 |
+
|
| 151 |
+
# create a bigger mask, to allow attend to mu and logvar
|
| 152 |
+
token_mask = torch.ones((bs, 2), dtype=bool, device=x.device)
|
| 153 |
+
aug_mask = torch.cat((token_mask, mask), 1)
|
| 154 |
+
else:
|
| 155 |
+
emb_token = torch.tile(self.emb_token, (bs, )).reshape(bs, -1)
|
| 156 |
+
|
| 157 |
+
# adding the embedding token for all sequences
|
| 158 |
+
xseq = torch.cat((emb_token[None], x), 0)
|
| 159 |
+
|
| 160 |
+
# create a bigger mask, to allow attend to emb
|
| 161 |
+
token_mask = torch.ones((bs, 1), dtype=bool, device=x.device)
|
| 162 |
+
aug_mask = torch.cat((token_mask, mask), 1)
|
| 163 |
+
|
| 164 |
+
# add positional encoding
|
| 165 |
+
xseq = self.sequence_pos_encoding(xseq)
|
| 166 |
+
final = self.seqTransEncoder(xseq, src_key_padding_mask=~aug_mask)
|
| 167 |
+
|
| 168 |
+
if self.vae:
|
| 169 |
+
mu, logvar = final[0], final[1]
|
| 170 |
+
std = logvar.exp().pow(0.5)
|
| 171 |
+
# https://github.com/kampta/pytorch-distributions/blob/master/gaussian_vae.py
|
| 172 |
+
dist = torch.distributions.Normal(mu, std)
|
| 173 |
+
return dist
|
| 174 |
+
else:
|
| 175 |
+
return final[0]
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class ActorAgnosticDecoder(nn.Module):
|
| 179 |
+
|
| 180 |
+
def __init__(self,
|
| 181 |
+
nfeats: int,
|
| 182 |
+
latent_dim: int = 256,
|
| 183 |
+
ff_size: int = 1024,
|
| 184 |
+
num_layers: int = 4,
|
| 185 |
+
num_heads: int = 4,
|
| 186 |
+
dropout: float = 0.1,
|
| 187 |
+
activation: str = "gelu",
|
| 188 |
+
**kwargs) -> None:
|
| 189 |
+
super().__init__()
|
| 190 |
+
|
| 191 |
+
output_feats = nfeats
|
| 192 |
+
self.latent_dim = latent_dim
|
| 193 |
+
self.nfeats = nfeats
|
| 194 |
+
|
| 195 |
+
self.sequence_pos_encoding = PositionalEncoding(latent_dim, dropout)
|
| 196 |
+
|
| 197 |
+
seq_trans_decoder_layer = nn.TransformerDecoderLayer(
|
| 198 |
+
d_model=latent_dim,
|
| 199 |
+
nhead=num_heads,
|
| 200 |
+
dim_feedforward=ff_size,
|
| 201 |
+
dropout=dropout,
|
| 202 |
+
activation=activation)
|
| 203 |
+
|
| 204 |
+
self.seqTransDecoder = nn.TransformerDecoder(seq_trans_decoder_layer,
|
| 205 |
+
num_layers=num_layers)
|
| 206 |
+
|
| 207 |
+
self.final_layer = nn.Linear(latent_dim, output_feats)
|
| 208 |
+
|
| 209 |
+
def forward(self, z: Tensor, lengths: List[int]):
|
| 210 |
+
mask = lengths_to_mask(lengths, z.device)
|
| 211 |
+
# latent_dim = z.shape[1]
|
| 212 |
+
bs, nframes = mask.shape
|
| 213 |
+
nfeats = self.nfeats
|
| 214 |
+
|
| 215 |
+
# z = z[None] # sequence of 1 element for the memory
|
| 216 |
+
|
| 217 |
+
# Construct time queries
|
| 218 |
+
time_queries = torch.zeros(nframes,
|
| 219 |
+
bs,
|
| 220 |
+
self.latent_dim,
|
| 221 |
+
device=z.device)
|
| 222 |
+
time_queries = self.sequence_pos_encoding(time_queries)
|
| 223 |
+
|
| 224 |
+
# Pass through the transformer decoder
|
| 225 |
+
# with the latent vector for memory
|
| 226 |
+
output = self.seqTransDecoder(tgt=time_queries,
|
| 227 |
+
memory=z,
|
| 228 |
+
tgt_key_padding_mask=~mask)
|
| 229 |
+
|
| 230 |
+
output = self.final_layer(output)
|
| 231 |
+
# zero for padded area
|
| 232 |
+
output[~mask.T] = 0
|
| 233 |
+
# Pytorch Transformer: [Sequence, Batch size, ...]
|
| 234 |
+
feats = output.permute(1, 0, 2)
|
| 235 |
+
return feats
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def sample_from_distribution(
|
| 239 |
+
dist,
|
| 240 |
+
*,
|
| 241 |
+
fact=1.0,
|
| 242 |
+
sample_mean=False,
|
| 243 |
+
) -> Tensor:
|
| 244 |
+
|
| 245 |
+
if sample_mean:
|
| 246 |
+
return dist.loc.unsqueeze(0)
|
| 247 |
+
|
| 248 |
+
# Reparameterization trick
|
| 249 |
+
if fact is None:
|
| 250 |
+
return dist.rsample().unsqueeze(0)
|
| 251 |
+
|
| 252 |
+
# Resclale the eps
|
| 253 |
+
eps = dist.rsample() - dist.loc
|
| 254 |
+
z = dist.loc + fact * eps
|
| 255 |
+
|
| 256 |
+
# add latent size
|
| 257 |
+
z = z.unsqueeze(0)
|
| 258 |
+
return z
|
Evaluator_272/mld/models/architectures/fc.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Encoder_FC(nn.Module):
|
| 7 |
+
def __init__(self, modeltype, njoints, nfeats, num_frames, num_classes, translation, pose_rep, glob, glob_rot,
|
| 8 |
+
latent_dim=256, **kargs):
|
| 9 |
+
super().__init__()
|
| 10 |
+
|
| 11 |
+
self.modeltype = modeltype
|
| 12 |
+
self.njoints = njoints
|
| 13 |
+
self.nfeats = nfeats
|
| 14 |
+
self.num_frames = num_frames
|
| 15 |
+
self.num_classes = num_classes
|
| 16 |
+
self.translation = translation
|
| 17 |
+
self.pose_rep = pose_rep
|
| 18 |
+
self.glob = glob
|
| 19 |
+
self.glob_rot = glob_rot
|
| 20 |
+
|
| 21 |
+
self.latent_dim = latent_dim
|
| 22 |
+
|
| 23 |
+
self.activation = nn.GELU()
|
| 24 |
+
|
| 25 |
+
self.input_dim = self.njoints*self.nfeats*self.num_frames+self.num_classes
|
| 26 |
+
|
| 27 |
+
self.fully_connected = nn.Sequential(nn.Linear(self.input_dim, 512),
|
| 28 |
+
nn.GELU(),
|
| 29 |
+
nn.Linear(512, 256),
|
| 30 |
+
nn.GELU())
|
| 31 |
+
if self.modeltype == "cvae":
|
| 32 |
+
self.mu = nn.Linear(256, self.latent_dim)
|
| 33 |
+
self.var = nn.Linear(256, self.latent_dim)
|
| 34 |
+
else:
|
| 35 |
+
self.final = nn.Linear(256, self.latent_dim)
|
| 36 |
+
|
| 37 |
+
def forward(self, batch):
|
| 38 |
+
x, y = batch["x"], batch["y"]
|
| 39 |
+
bs, njoints, feats, nframes = x.size()
|
| 40 |
+
if (njoints * feats * nframes) != self.njoints*self.nfeats*self.num_frames:
|
| 41 |
+
raise ValueError("This model is not adapted with this input")
|
| 42 |
+
|
| 43 |
+
if len(y.shape) == 1: # can give on hot encoded as input
|
| 44 |
+
y = F.one_hot(y, self.num_classes)
|
| 45 |
+
y = y.to(dtype=x.dtype)
|
| 46 |
+
x = x.reshape(bs, njoints*feats*nframes)
|
| 47 |
+
x = torch.cat((x, y), 1)
|
| 48 |
+
|
| 49 |
+
x = self.fully_connected(x)
|
| 50 |
+
|
| 51 |
+
if self.modeltype == "cvae":
|
| 52 |
+
return {"mu": self.mu(x), "logvar": self.var(x)}
|
| 53 |
+
else:
|
| 54 |
+
return {"z": self.final(x)}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class Decoder_FC(nn.Module):
|
| 58 |
+
def __init__(self, modeltype, njoints, nfeats, num_frames, num_classes, translation, pose_rep, glob, glob_rot,
|
| 59 |
+
latent_dim=256, **kargs):
|
| 60 |
+
super().__init__()
|
| 61 |
+
|
| 62 |
+
self.modeltype = modeltype
|
| 63 |
+
self.njoints = njoints
|
| 64 |
+
self.nfeats = nfeats
|
| 65 |
+
self.num_frames = num_frames
|
| 66 |
+
self.num_classes = num_classes
|
| 67 |
+
self.translation = translation
|
| 68 |
+
self.pose_rep = pose_rep
|
| 69 |
+
self.glob = glob
|
| 70 |
+
self.glob_rot = glob_rot
|
| 71 |
+
|
| 72 |
+
self.latent_dim = latent_dim
|
| 73 |
+
|
| 74 |
+
self.input_dim = self.latent_dim + self.num_classes
|
| 75 |
+
self.output_dim = self.njoints*self.nfeats*self.num_frames
|
| 76 |
+
|
| 77 |
+
self.fully_connected = nn.Sequential(nn.Linear(self.input_dim, 256),
|
| 78 |
+
nn.GELU(),
|
| 79 |
+
nn.Linear(256, 512),
|
| 80 |
+
nn.GELU(),
|
| 81 |
+
nn.Linear(512, self.output_dim),
|
| 82 |
+
nn.GELU())
|
| 83 |
+
|
| 84 |
+
def forward(self, batch):
|
| 85 |
+
z, y = batch["z"], batch["y"]
|
| 86 |
+
# z: [batch_size, latent_dim]
|
| 87 |
+
# y: [batch_size]
|
| 88 |
+
if len(y.shape) == 1: # can give on hot encoded as input
|
| 89 |
+
y = F.one_hot(y, self.num_classes)
|
| 90 |
+
y = y.to(dtype=z.dtype) # y: [batch_size, num_classes]
|
| 91 |
+
# z: [batch_size, latent_dim+num_classes]
|
| 92 |
+
z = torch.cat((z, y), dim=1)
|
| 93 |
+
|
| 94 |
+
z = self.fully_connected(z)
|
| 95 |
+
|
| 96 |
+
bs, _ = z.size()
|
| 97 |
+
|
| 98 |
+
z = z.reshape(bs, self.njoints, self.nfeats, self.num_frames)
|
| 99 |
+
batch["output"] = z
|
| 100 |
+
return batch
|
Evaluator_272/mld/models/architectures/gpt/clip.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import Tensor, nn
|
| 6 |
+
from torch.distributions.distribution import Distribution
|
| 7 |
+
from transformers import AutoModel, AutoTokenizer, CLIPTextModel, CLIPTokenizer
|
| 8 |
+
|
| 9 |
+
from mld.models.operator import PositionalEncoding
|
| 10 |
+
from mld.utils.temos_utils import lengths_to_mask
|
| 11 |
+
|
| 12 |
+
import pytorch_lightning as pl
|
| 13 |
+
class TextEncoder(pl.LightningModule):
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
modelpath: str,
|
| 18 |
+
finetune: bool = False,
|
| 19 |
+
last_hidden_state: bool = False,
|
| 20 |
+
latent_dim: list = [1, 256],
|
| 21 |
+
) -> None:
|
| 22 |
+
|
| 23 |
+
super().__init__()
|
| 24 |
+
|
| 25 |
+
self.latent_dim = latent_dim
|
| 26 |
+
|
| 27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(modelpath)
|
| 28 |
+
self.text_model = AutoModel.from_pretrained(modelpath)
|
| 29 |
+
|
| 30 |
+
# Don't train the model
|
| 31 |
+
if not finetune:
|
| 32 |
+
self.text_model.training = False
|
| 33 |
+
for p in self.text_model.parameters():
|
| 34 |
+
p.requires_grad = False
|
| 35 |
+
|
| 36 |
+
# Then configure the model
|
| 37 |
+
self.max_length = self.tokenizer.model_max_length
|
| 38 |
+
if "clip" in modelpath:
|
| 39 |
+
self.text_encoded_dim = self.text_model.config.text_config.hidden_size
|
| 40 |
+
if last_hidden_state:
|
| 41 |
+
self.name = "clip_hidden"
|
| 42 |
+
else:
|
| 43 |
+
self.name = "clip"
|
| 44 |
+
elif "bert" in modelpath:
|
| 45 |
+
self.name = "bert"
|
| 46 |
+
self.text_encoded_dim = self.text_model.config.hidden_size
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(f"Model {modelpath} not supported")
|
| 49 |
+
|
| 50 |
+
def forward(self, texts: List[str]):
|
| 51 |
+
# get prompt text embeddings
|
| 52 |
+
if self.name in ["clip", "clip_hidden"]:
|
| 53 |
+
text_inputs = self.tokenizer(
|
| 54 |
+
texts,
|
| 55 |
+
padding="max_length",
|
| 56 |
+
truncation=True,
|
| 57 |
+
max_length=self.max_length,
|
| 58 |
+
return_tensors="pt",
|
| 59 |
+
)
|
| 60 |
+
text_input_ids = text_inputs.input_ids
|
| 61 |
+
# split into max length Clip can handle
|
| 62 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
| 63 |
+
text_input_ids = text_input_ids[:, :self.tokenizer.
|
| 64 |
+
model_max_length]
|
| 65 |
+
elif self.name == "bert":
|
| 66 |
+
text_inputs = self.tokenizer(texts,
|
| 67 |
+
return_tensors="pt",
|
| 68 |
+
padding=True)
|
| 69 |
+
|
| 70 |
+
# use pooled ouuput if latent dim is two-dimensional
|
| 71 |
+
# pooled = 0 if self.latent_dim[0] == 1 else 1 # (bs, seq_len, text_encoded_dim) -> (bs, text_encoded_dim)
|
| 72 |
+
# text encoder forward, clip must use get_text_features
|
| 73 |
+
if self.name == "clip":
|
| 74 |
+
# (batch_Size, text_encoded_dim)
|
| 75 |
+
text_embeddings = self.text_model.get_text_features(
|
| 76 |
+
text_input_ids.to(self.text_model.device))
|
| 77 |
+
# (batch_Size, 1, text_encoded_dim)
|
| 78 |
+
text_embeddings = text_embeddings.unsqueeze(1)
|
| 79 |
+
elif self.name == "clip_hidden":
|
| 80 |
+
# (batch_Size, seq_length , text_encoded_dim)
|
| 81 |
+
text_embeddings = self.text_model.text_model(
|
| 82 |
+
text_input_ids.to(self.text_model.device)).last_hidden_state
|
| 83 |
+
elif self.name == "bert":
|
| 84 |
+
# (batch_Size, seq_length , text_encoded_dim)
|
| 85 |
+
text_embeddings = self.text_model(
|
| 86 |
+
**text_inputs.to(self.text_model.device)).last_hidden_state
|
| 87 |
+
else:
|
| 88 |
+
raise NotImplementedError(f"Model {self.name} not implemented")
|
| 89 |
+
|
| 90 |
+
return text_embeddings
|
Evaluator_272/mld/models/architectures/gpt/pos_encoding.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Various positional encodings for the transformer.
|
| 3 |
+
"""
|
| 4 |
+
import math
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
def PE1d_sincos(seq_length, dim):
|
| 9 |
+
"""
|
| 10 |
+
:param d_model: dimension of the model
|
| 11 |
+
:param length: length of positions
|
| 12 |
+
:return: length*d_model position matrix
|
| 13 |
+
"""
|
| 14 |
+
if dim % 2 != 0:
|
| 15 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
| 16 |
+
"odd dim (got dim={:d})".format(dim))
|
| 17 |
+
pe = torch.zeros(seq_length, dim)
|
| 18 |
+
position = torch.arange(0, seq_length).unsqueeze(1)
|
| 19 |
+
div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
|
| 20 |
+
-(math.log(10000.0) / dim)))
|
| 21 |
+
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
| 22 |
+
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
| 23 |
+
|
| 24 |
+
return pe.unsqueeze(1)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class PositionEmbedding(nn.Module):
|
| 28 |
+
"""
|
| 29 |
+
Absolute pos embedding (standard), learned.
|
| 30 |
+
"""
|
| 31 |
+
def __init__(self, seq_length, dim, dropout, grad=False):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.embed = nn.Parameter(data=PE1d_sincos(seq_length, dim), requires_grad=grad)
|
| 34 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 35 |
+
|
| 36 |
+
def forward(self, x):
|
| 37 |
+
# x.shape: bs, seq_len, feat_dim
|
| 38 |
+
l = x.shape[1]
|
| 39 |
+
x = x.permute(1, 0, 2) + self.embed[:l].expand(x.permute(1, 0, 2).shape)
|
| 40 |
+
x = self.dropout(x.permute(1, 0, 2))
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
|