Text Classification
Safetensors
Chinese
qwen2
nielsr HF Staff commited on
Commit
7ceed7b
·
verified ·
1 Parent(s): 5154e62

Add library name and link to code

Browse files

This PR makes sure that people can more easily find the Github repository and that the appropriate "how to use" button shows up.

Files changed (1) hide show
  1. README.md +29 -10
README.md CHANGED
@@ -1,11 +1,13 @@
1
  ---
2
- license: cc-by-nc-4.0
 
3
  language:
4
  - zh
 
5
  pipeline_tag: text-classification
6
- datasets:
7
- - zjunlp/ChineseHarm-bench
8
  ---
 
9
  ## 🚀Installation
10
 
11
  1. Clone the repositories:
@@ -27,13 +29,17 @@ datasets:
27
 
28
  We release the following variants of our harmful content detection model:
29
 
 
 
 
 
30
  🔹 Single Inference (Example)
31
 
32
- Run single-input inference using the ChineseGuard-3B model:
33
 
34
  ```
35
  SCRIPT_PATH="../infer/single_infer.py"
36
- model_name="zjunlp/ChineseGuard-3B"
37
  text="代发短信,有想做的联系我,无押金"
38
 
39
  python $SCRIPT_PATH \
@@ -43,13 +49,13 @@ python $SCRIPT_PATH \
43
 
44
  🔸 Batch Inference (Multi-NPU or Multi-GPU)
45
 
46
- To run inference on the entire ChineseHarm-Bench using ChineseGuard-3B and 8 NPUs:
47
 
48
  ```
49
  SCRIPT_PATH="../infer/batch_infer.py"
50
- model_name="zjunlp/ChineseHarm-3B"
51
  file_name="../benchmark/bench.json"
52
- output_file="../benchmark/bench_ChineseHarm-3B.json"
53
 
54
  python $SCRIPT_PATH \
55
  --model_name $model_name \
@@ -63,9 +69,20 @@ python $SCRIPT_PATH \
63
  >
64
  > **Note:** The inference scripts support both NPU and GPU devices.
65
 
 
 
 
 
 
 
 
 
 
 
 
66
  ## 🚩Citation
67
 
68
- Please cite our repository if you use ChineseGuard in your work. Thanks!
69
 
70
  ```bibtex
71
  @misc{liu2025chineseharmbenchchineseharmfulcontent,
@@ -77,4 +94,6 @@ Please cite our repository if you use ChineseGuard in your work. Thanks!
77
  primaryClass={cs.CL},
78
  url={https://arxiv.org/abs/2506.10960},
79
  }
80
- ```
 
 
 
1
  ---
2
+ datasets:
3
+ - zjunlp/ChineseHarm-bench
4
  language:
5
  - zh
6
+ license: cc-by-nc-4.0
7
  pipeline_tag: text-classification
8
+ library_name: transformers
 
9
  ---
10
+
11
  ## 🚀Installation
12
 
13
  1. Clone the repositories:
 
29
 
30
  We release the following variants of our harmful content detection model:
31
 
32
+ - [**ChineseGuard-1.5B**](https://huggingface.co/zjunlp/ChineseGuard-1.5B)
33
+ - [**ChineseGuard-3B**](https://huggingface.co/zjunlp/ChineseGuard-3B)
34
+ - [**ChineseGuard-7B**](https://huggingface.co/zjunlp/ChineseGuard-7B)
35
+
36
  🔹 Single Inference (Example)
37
 
38
+ Run single-input inference using the ChineseGuard-1.5B model:
39
 
40
  ```
41
  SCRIPT_PATH="../infer/single_infer.py"
42
+ model_name="zjunlp/ChineseGuard-1.5B"
43
  text="代发短信,有想做的联系我,无押金"
44
 
45
  python $SCRIPT_PATH \
 
49
 
50
  🔸 Batch Inference (Multi-NPU or Multi-GPU)
51
 
52
+ To run inference on the entire ChineseHarm-Bench using ChineseGuard-1.5B and 8 NPUs:
53
 
54
  ```
55
  SCRIPT_PATH="../infer/batch_infer.py"
56
+ model_name="zjunlp/ChineseHarm-1.5B"
57
  file_name="../benchmark/bench.json"
58
+ output_file="../benchmark/bench_ChineseHarm-1.5B.json"
59
 
60
  python $SCRIPT_PATH \
61
  --model_name $model_name \
 
69
  >
70
  > **Note:** The inference scripts support both NPU and GPU devices.
71
 
72
+ **Evaluation: Calculating F1 Score**
73
+
74
+ After inference, evaluate the predictions by computing the F1 score with the following command:
75
+
76
+ ```
77
+ python ../calculate_metrics.py \
78
+ --file_path "../benchmark/bench_ChineseHarm-1.5B.json" \
79
+ --true_label_field "标签" \
80
+ --predicted_label_field "predict_label"
81
+ ```
82
+
83
  ## 🚩Citation
84
 
85
+ Please cite our repository if you use ChineseHarm-bench in your work. Thanks!
86
 
87
  ```bibtex
88
  @misc{liu2025chineseharmbenchchineseharmfulcontent,
 
94
  primaryClass={cs.CL},
95
  url={https://arxiv.org/abs/2506.10960},
96
  }
97
+ ```
98
+
99
+ Codebase: https://github.com/zjunlp/ChineseHarm-bench