File size: 2,664 Bytes
59fd0dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d316df
59fd0dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e0ef5d
59fd0dd
11125c7
59fd0dd
 
 
 
 
 
 
baf6b2d
59fd0dd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
pipeline_tag: translation
library_name: comet
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: apache-2.0
base_model:
- FacebookAI/xlm-roberta-large
---

# COMET-poly-base-wmt25

This model is based on [COMET-poly](https://github.com/zouharvi/COMET-poly), which is a fork but not compatible with original Unbabel's COMET.
To run the model, you need to first install this version of COMET either with:
```bash
pip install "git+https://github.com/zouharvi/COMET-poly#egg=comet-poly&subdirectory=comet_poly"
```
or in editable mode:
```bash
git clone https://github.com/zouharvi/COMET-poly.git
cd COMET-poly
pip3 install -e comet_poly
```

This model scores the translation `mt` given its source. It is a baseline model that other COMET-poly models are compared to.
```python
import comet_poly
model = comet_poly.load_from_checkpoint(comet_poly.download_model("zouharvi/COMET-poly-base-wmt25"))
data = [
    {
        "src": "Iceberg lettuce got its name in the 1920s when it was shipped packed in ice to stay fresh.",
        "mt": "Eisbergsalat erhielt seinen Namen in den 1920er-Jahren, als er in Eis verpackt verschickt wurde, um frisch zu bleiben.",
    },
    {
        "src": "Goats have rectangular pupils, which give them a wide field of vision—up to 320 degrees!",
        "mt": "Kozy mají obdélníkové zornice, což jim umožňuje vidět skoro všude kolem sebe, aniž by musely otáčet hlavou.",
    },
    {
        "src": "This helps them spot predators from almost all directions without moving their heads.",
        "mt": "Điều này giúp chúng phát hiện kẻ săn mồi từ gần như mọi hướng mà không cần quay đầu.",
    }
]
print("scores", model.predict(data, batch_size=8, gpus=1).scores)
```
Outputs:
```
scores [94.98790740966797, 77.56731414794922, 90.77655029296875]
```

The training data is WMT up to 2024 (inclusive) with DA/ESA/MQM merged on a single scale.
This model is based on the work [TODO](TODO) which can be cited as:
```
@misc{zuefle2025comet,
    title={COMET-poly: Machine Translation Metric Grounded in Other Candidates},
    author={Maike Züfle, Vilém Zouhar, Tu Anh Dinh, Felipe Polo, Jan Niehues, Mrinmaya Sachan},
    year={2025},
}
```