tinyllama-lora-fast

Trained primarily on Prothom Alo news data, this model naturally writes in that newspaper’s concise, reportorial Bangla style.

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 Bangla Newspaper Dataset. The single goal: enable fast training and low VRAM usage—even on small GPUs or TPUs.Use Dynamic Padding + Token Budget for low Gpu And Tpu It achieves the following results on the evaluation set:

  • Loss: 0.8744

Model description

Base model: TinyLlama/TinyLlama-1.1B-Chat-v1.0

Adapter: PEFT-LoRA (r=16, alpha=32, dropout=0.05, bias=none)

Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj

Context length (train max): MAX_LEN=768

Optimization: AdamW (lr≈3e-5, warmup≈0.03, weight_decay≈0.05)

Batching: length-based bucketing + dynamic padding

Precision: fp16 inference-ready (training setup Kaggle/Colab-friendly)

Decoding (low hallucination preset): temperature=0.0, do_sample=False, no_repeat_ngram_size=4, repetition_penalty≈1.1–1.15

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0752 0.1111 200 1.0674
1.0248 0.2222 400 1.0167
0.9839 0.3333 600 0.9843
0.9479 0.4444 800 0.9620
0.9478 0.5556 1000 0.9457
0.914 0.6667 1200 0.9318
0.9329 0.7778 1400 0.9182
0.8929 0.8889 1600 0.9104
0.911 1.0 1800 0.9005
0.869 1.1111 2000 0.8949
0.8873 1.2222 2200 0.8892
0.8551 1.3333 2400 0.8848
0.8543 1.4444 2600 0.8812
0.8741 1.5556 2800 0.8779
0.8652 1.6667 3000 0.8760
0.8534 1.7778 3200 0.8751
0.8378 1.8889 3400 0.8745
0.8514 2.0 3600 0.8744

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.2
  • Pytorch 2.6.0+cu124
  • Datasets 4.1.1
  • Tokenizers 0.20.3
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for 25Iqbal/tinyllama-lora-fast

Adapter
(1270)
this model

Dataset used to train 25Iqbal/tinyllama-lora-fast

Evaluation results