robertaScenario2-news-classifier
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2017
- Accuracy: 0.6445
- Precision: 0.7092
- Recall: 0.6445
- F1: 0.6583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 2.6751 | 1.0 | 10477 | 1.5673 | 0.5735 | 0.6436 | 0.5735 | 0.5877 |
| 1.601 | 2.0 | 20954 | 1.3427 | 0.6107 | 0.6753 | 0.6107 | 0.6221 |
| 1.377 | 3.0 | 31431 | 1.2642 | 0.6181 | 0.6955 | 0.6181 | 0.6342 |
| 1.2432 | 4.0 | 41908 | 1.2186 | 0.6400 | 0.7020 | 0.6400 | 0.6529 |
| 1.1513 | 5.0 | 52385 | 1.2192 | 0.6444 | 0.7080 | 0.6444 | 0.6587 |
| 1.0796 | 6.0 | 62862 | 1.2017 | 0.6445 | 0.7092 | 0.6445 | 0.6583 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Model tree for AbrarAbhinaya/robertaScenario2-news-classifier
Base model
FacebookAI/roberta-base