stock-trading-rl-agent / dataprocessor.py
Adilbai's picture
Upload 2 files
34aa90f verified
import yfinance as yf
import pandas as pd
import numpy as np
from typing import List, Dict, Optional, Tuple
import os
import logging
from datetime import datetime, timedelta
import pickle
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import warnings
warnings.filterwarnings('ignore')
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class StockDataProcessor:
"""
A comprehensive class for downloading, processing, and preprocessing stock data
from Yahoo Finance for reinforcement learning applications.
"""
def __init__(self, data_dir: str = "stock_data", cache_dir: str = "cache"):
self.data_dir = data_dir
self.cache_dir = cache_dir
self.scalers = {}
# Create directories if they don't exist
os.makedirs(data_dir, exist_ok=True)
os.makedirs(cache_dir, exist_ok=True)
def get_sp500_tickers(self) -> List[str]:
"""Get S&P 500 stock tickers"""
try:
# Download S&P 500 list from Wikipedia
url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
tables = pd.read_html(url)
sp500_table = tables[0]
tickers = sp500_table['Symbol'].tolist()
# Clean tickers (remove dots, etc.)
tickers = [ticker.replace('.', '-') for ticker in tickers]
logger.info(f"Retrieved {len(tickers)} S&P 500 tickers")
return tickers
except Exception as e:
logger.error(f"Error fetching S&P 500 tickers: {e}")
# Fallback to a smaller list of popular stocks
return ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA', 'META', 'NVDA', 'JPM', 'JNJ', 'V']
def download_stock_data(self,
ticker: str,
period: str = "10y",
interval: str = "1d") -> Optional[pd.DataFrame]:
"""
Download stock data for a single ticker
Args:
ticker: Stock symbol
period: Time period (1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max)
interval: Data interval (1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo)
"""
try:
stock = yf.Ticker(ticker)
data = stock.history(period=period, interval=interval)
if data.empty:
logger.warning(f"No data found for {ticker}")
return None
# Add ticker column
data['Ticker'] = ticker
data.reset_index(inplace=True)
logger.info(f"Downloaded {len(data)} records for {ticker}")
return data
except Exception as e:
logger.error(f"Error downloading data for {ticker}: {e}")
return None
def download_multiple_stocks(self,
tickers: List[str],
period: str = "10y",
interval: str = "1d",
max_workers: int = 10) -> pd.DataFrame:
"""
Download stock data for multiple tickers using parallel processing
"""
all_data = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all download tasks
future_to_ticker = {
executor.submit(self.download_stock_data, ticker, period, interval): ticker
for ticker in tickers
}
# Collect results
for future in as_completed(future_to_ticker):
ticker = future_to_ticker[future]
try:
data = future.result()
if data is not None:
all_data.append(data)
except Exception as e:
logger.error(f"Error processing {ticker}: {e}")
# Rate limiting
time.sleep(0.1)
if all_data:
combined_data = pd.concat(all_data, ignore_index=True)
logger.info(f"Combined data shape: {combined_data.shape}")
return combined_data
else:
return pd.DataFrame()
def calculate_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Calculate technical indicators for each stock
"""
logger.info("Calculating technical indicators...")
result_dfs = []
for ticker in df['Ticker'].unique():
ticker_data = df[df['Ticker'] == ticker].copy()
ticker_data = ticker_data.sort_values('Date')
# Moving averages
ticker_data['SMA_5'] = ticker_data['Close'].rolling(window=5).mean()
ticker_data['SMA_10'] = ticker_data['Close'].rolling(window=10).mean()
ticker_data['SMA_20'] = ticker_data['Close'].rolling(window=20).mean()
ticker_data['SMA_50'] = ticker_data['Close'].rolling(window=50).mean()
# Exponential moving averages
ticker_data['EMA_12'] = ticker_data['Close'].ewm(span=12).mean()
ticker_data['EMA_26'] = ticker_data['Close'].ewm(span=26).mean()
# MACD
ticker_data['MACD'] = ticker_data['EMA_12'] - ticker_data['EMA_26']
ticker_data['MACD_Signal'] = ticker_data['MACD'].ewm(span=9).mean()
ticker_data['MACD_Histogram'] = ticker_data['MACD'] - ticker_data['MACD_Signal']
# RSI
delta = ticker_data['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
ticker_data['RSI'] = 100 - (100 / (1 + rs))
# Bollinger Bands
ticker_data['BB_Middle'] = ticker_data['Close'].rolling(window=20).mean()
bb_std = ticker_data['Close'].rolling(window=20).std()
ticker_data['BB_Upper'] = ticker_data['BB_Middle'] + (bb_std * 2)
ticker_data['BB_Lower'] = ticker_data['BB_Middle'] - (bb_std * 2)
ticker_data['BB_Width'] = ticker_data['BB_Upper'] - ticker_data['BB_Lower']
ticker_data['BB_Position'] = (ticker_data['Close'] - ticker_data['BB_Lower']) / ticker_data['BB_Width']
# Volatility
ticker_data['Volatility'] = ticker_data['Close'].rolling(window=20).std()
# Price change features
ticker_data['Price_Change'] = ticker_data['Close'].pct_change()
ticker_data['Price_Change_5d'] = ticker_data['Close'].pct_change(periods=5)
ticker_data['High_Low_Ratio'] = ticker_data['High'] / ticker_data['Low']
ticker_data['Open_Close_Ratio'] = ticker_data['Open'] / ticker_data['Close']
# Volume features
ticker_data['Volume_SMA'] = ticker_data['Volume'].rolling(window=20).mean()
ticker_data['Volume_Ratio'] = ticker_data['Volume'] / ticker_data['Volume_SMA']
result_dfs.append(ticker_data)
result = pd.concat(result_dfs, ignore_index=True)
logger.info(f"Technical indicators calculated. New shape: {result.shape}")
return result
def create_lagged_features(self, df: pd.DataFrame, lags: List[int] = [1, 2, 3, 5, 10]) -> pd.DataFrame:
"""
Create lagged features for time series analysis
"""
logger.info("Creating lagged features...")
result_dfs = []
feature_columns = ['Close', 'Volume', 'Price_Change', 'RSI', 'MACD', 'Volatility']
for ticker in df['Ticker'].unique():
ticker_data = df[df['Ticker'] == ticker].copy()
ticker_data = ticker_data.sort_values('Date')
for col in feature_columns:
if col in ticker_data.columns:
for lag in lags:
ticker_data[f'{col}_lag_{lag}'] = ticker_data[col].shift(lag)
result_dfs.append(ticker_data)
result = pd.concat(result_dfs, ignore_index=True)
logger.info(f"Lagged features created. New shape: {result.shape}")
return result
def create_future_returns(self, df: pd.DataFrame, horizons: List[int] = [1, 5, 10, 20]) -> pd.DataFrame:
"""
Create future return targets for prediction
"""
logger.info("Creating future return targets...")
result_dfs = []
for ticker in df['Ticker'].unique():
ticker_data = df[df['Ticker'] == ticker].copy()
ticker_data = ticker_data.sort_values('Date')
for horizon in horizons:
ticker_data[f'Future_Return_{horizon}d'] = ticker_data['Close'].shift(-horizon) / ticker_data['Close'] - 1
# Create binary classification targets
ticker_data[f'Future_Up_{horizon}d'] = (ticker_data[f'Future_Return_{horizon}d'] > 0).astype(int)
# Create categorical targets (strong down, down, up, strong up)
returns = ticker_data[f'Future_Return_{horizon}d']
ticker_data[f'Future_Category_{horizon}d'] = pd.cut(
returns,
bins=[-np.inf, -0.02, 0, 0.02, np.inf],
labels=[0, 1, 2, 3]
).astype(float)
result_dfs.append(ticker_data)
result = pd.concat(result_dfs, ignore_index=True)
logger.info(f"Future return targets created. New shape: {result.shape}")
return result
def clean_and_normalize_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Clean and normalize the data for ML/RL
"""
logger.info("Cleaning and normalizing data...")
# Remove rows with too many NaN values
df = df.dropna(thresh=len(df.columns) * 0.7)
# Forward fill remaining NaN values
numeric_columns = df.select_dtypes(include=[np.number]).columns
df[numeric_columns] = df[numeric_columns].fillna(method='ffill')
# Remove infinite values
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
logger.info(f"Data cleaned. Final shape: {df.shape}")
return df
def create_rl_states_actions(self, df: pd.DataFrame) -> Dict:
"""
Create state and action spaces suitable for reinforcement learning
"""
logger.info("Creating RL state and action representations...")
# Define state features (technical indicators and market data)
state_features = [
'Open', 'High', 'Low', 'Close', 'Volume',
'SMA_5', 'SMA_10', 'SMA_20', 'SMA_50',
'EMA_12', 'EMA_26', 'MACD', 'MACD_Signal', 'RSI',
'BB_Position', 'BB_Width', 'Volatility',
'Price_Change', 'High_Low_Ratio', 'Volume_Ratio'
]
# Add lagged features to state
lag_features = [col for col in df.columns if '_lag_' in col]
state_features.extend(lag_features)
# Filter existing features
state_features = [feat for feat in state_features if feat in df.columns]
# Normalize state features
scaler = StandardScaler()
df_scaled = df.copy()
df_scaled[state_features] = scaler.fit_transform(df[state_features])
# Define action space (0: Hold, 1: Buy, 2: Sell)
# You can expand this based on your RL strategy
# Create sequences for each stock
rl_data = {}
sequence_length = 60 # Number of days to look back
for ticker in df_scaled['Ticker'].unique():
ticker_data = df_scaled[df_scaled['Ticker'] == ticker].sort_values('Date')
states = []
rewards = []
dates = []
for i in range(sequence_length, len(ticker_data)):
# State: sequence of technical indicators
state_sequence = ticker_data.iloc[i-sequence_length:i][state_features].values
states.append(state_sequence)
# Reward: next day return (can be modified based on your RL objective)
if 'Future_Return_1d' in ticker_data.columns:
reward = ticker_data.iloc[i]['Future_Return_1d']
else:
current_price = ticker_data.iloc[i]['Close']
if i < len(ticker_data) - 1:
next_price = ticker_data.iloc[i+1]['Close']
reward = (next_price - current_price) / current_price
else:
reward = 0
rewards.append(reward)
dates.append(ticker_data.iloc[i]['Date'])
rl_data[ticker] = {
'states': np.array(states),
'rewards': np.array(rewards),
'dates': dates,
'state_features': state_features
}
logger.info(f"RL data created for {len(rl_data)} stocks")
return rl_data, scaler
def save_processed_data(self, data: pd.DataFrame, rl_data: Dict, scaler, filename_prefix: str = "processed_stock_data"):
"""
Save processed data to files
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Save CSV data
csv_filename = f"{self.data_dir}/{filename_prefix}_{timestamp}.csv"
data.to_csv(csv_filename, index=False)
logger.info(f"CSV data saved to {csv_filename}")
# Save RL data
rl_filename = f"{self.data_dir}/{filename_prefix}_rl_{timestamp}.pkl"
with open(rl_filename, 'wb') as f:
pickle.dump(rl_data, f)
logger.info(f"RL data saved to {rl_filename}")
# Save scaler
scaler_filename = f"{self.data_dir}/{filename_prefix}_scaler_{timestamp}.pkl"
with open(scaler_filename, 'wb') as f:
pickle.dump(scaler, f)
logger.info(f"Scaler saved to {scaler_filename}")
return csv_filename, rl_filename, scaler_filename
def process_stocks_pipeline(self,
tickers: Optional[List[str]] = None,
period: str = "10y",
interval: str = "1d",
use_sp500: bool = True) -> Tuple[pd.DataFrame, Dict, object]:
"""
Complete pipeline for processing stock data
"""
logger.info("Starting stock data processing pipeline...")
# Get tickers
if tickers is None:
if use_sp500:
tickers = self.get_sp500_tickers()
else:
tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA'] # Default list
# Download data
logger.info(f"Downloading data for {len(tickers)} tickers...")
raw_data = self.download_multiple_stocks(tickers, period, interval)
if raw_data.empty:
logger.error("No data downloaded. Exiting.")
return None, None, None
# Process data
data_with_indicators = self.calculate_technical_indicators(raw_data)
data_with_lags = self.create_lagged_features(data_with_indicators)
data_with_targets = self.create_future_returns(data_with_lags)
cleaned_data = self.clean_and_normalize_data(data_with_targets)
# Create RL data
rl_data, scaler = self.create_rl_states_actions(cleaned_data)
# Save data
self.save_processed_data(cleaned_data, rl_data, scaler)
logger.info("Pipeline completed successfully!")
return cleaned_data, rl_data, scaler
# Example usage and utility functions
def example_usage():
"""
Example of how to use the StockDataProcessor
"""
# Initialize processor
processor = StockDataProcessor()
# Option 1: Process S&P 500 stocks
print("Processing S&P 500 stocks...")
data, rl_data, scaler = processor.process_stocks_pipeline(use_sp500=True, period="5y")
# Option 2: Process specific stocks
# custom_tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA', 'META', 'NVDA']
# data, rl_data, scaler = processor.process_stocks_pipeline(tickers=custom_tickers, period="10y")
if data is not None:
print(f"Processed data shape: {data.shape}")
print(f"Features: {data.columns.tolist()}")
print(f"RL data available for {len(rl_data)} stocks")
# Example: Access RL data for a specific stock
if 'AAPL' in rl_data:
aapl_states = rl_data['AAPL']['states']
aapl_rewards = rl_data['AAPL']['rewards']
print(f"AAPL: {aapl_states.shape[0]} sequences, each with {aapl_states.shape[1]} timesteps and {aapl_states.shape[2]} features")
def load_processed_data(rl_filename: str, scaler_filename: str) -> Tuple[Dict, object]:
"""
Load previously processed RL data
"""
with open(rl_filename, 'rb') as f:
rl_data = pickle.load(f)
with open(scaler_filename, 'rb') as f:
scaler = pickle.load(f)
return rl_data, scaler
if __name__ == "__main__":
example_usage()