See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f498211ddfc39ad0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f498211ddfc39ad0_train_data.json
type:
field_instruction: text
field_output: text_description
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c678b481-0ad6-4257-a56c-4d91becf4293
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/f498211ddfc39ad0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03253196265330687
wandb_entity: null
wandb_mode: online
wandb_name: c45098d1-819e-4d15-988b-1e7aa32b705d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c45098d1-819e-4d15-988b-1e7aa32b705d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c678b481-0ad6-4257-a56c-4d91becf4293
This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4520
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4140
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 4.3494 | 0.0002 | 1 | 4.3327 |
| 0.5927 | 0.0215 | 100 | 0.6349 |
| 0.608 | 0.0430 | 200 | 0.5796 |
| 0.5354 | 0.0646 | 300 | 0.5645 |
| 0.6403 | 0.0861 | 400 | 0.5615 |
| 0.5192 | 0.1076 | 500 | 0.5449 |
| 0.5448 | 0.1291 | 600 | 0.5466 |
| 0.5212 | 0.1506 | 700 | 0.5367 |
| 0.5418 | 0.1722 | 800 | 0.5362 |
| 0.5331 | 0.1937 | 900 | 0.5267 |
| 0.5409 | 0.2152 | 1000 | 0.5253 |
| 0.4625 | 0.2367 | 1100 | 0.5164 |
| 0.5296 | 0.2582 | 1200 | 0.5211 |
| 0.4505 | 0.2798 | 1300 | 0.5087 |
| 0.4866 | 0.3013 | 1400 | 0.5103 |
| 0.5375 | 0.3228 | 1500 | 0.5059 |
| 0.4452 | 0.3443 | 1600 | 0.5032 |
| 0.5125 | 0.3658 | 1700 | 0.4982 |
| 0.4881 | 0.3874 | 1800 | 0.4961 |
| 0.4994 | 0.4089 | 1900 | 0.4927 |
| 0.5012 | 0.4304 | 2000 | 0.4886 |
| 0.4679 | 0.4519 | 2100 | 0.4882 |
| 0.5002 | 0.4734 | 2200 | 0.4848 |
| 0.4924 | 0.4950 | 2300 | 0.4808 |
| 0.5217 | 0.5165 | 2400 | 0.4782 |
| 0.4588 | 0.5380 | 2500 | 0.4752 |
| 0.4663 | 0.5595 | 2600 | 0.4734 |
| 0.4613 | 0.5811 | 2700 | 0.4707 |
| 0.4497 | 0.6026 | 2800 | 0.4701 |
| 0.449 | 0.6241 | 2900 | 0.4665 |
| 0.5207 | 0.6456 | 3000 | 0.4634 |
| 0.4806 | 0.6671 | 3100 | 0.4610 |
| 0.4238 | 0.6887 | 3200 | 0.4595 |
| 0.461 | 0.7102 | 3300 | 0.4572 |
| 0.507 | 0.7317 | 3400 | 0.4574 |
| 0.4169 | 0.7532 | 3500 | 0.4551 |
| 0.4393 | 0.7747 | 3600 | 0.4542 |
| 0.4432 | 0.7963 | 3700 | 0.4534 |
| 0.4521 | 0.8178 | 3800 | 0.4527 |
| 0.4717 | 0.8393 | 3900 | 0.4524 |
| 0.483 | 0.8608 | 4000 | 0.4520 |
| 0.463 | 0.8823 | 4100 | 0.4520 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/c678b481-0ad6-4257-a56c-4d91becf4293
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-1.5B-Instruct