Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f498211ddfc39ad0_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f498211ddfc39ad0_train_data.json
  type:
    field_instruction: text
    field_output: text_description
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c678b481-0ad6-4257-a56c-4d91becf4293
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/f498211ddfc39ad0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03253196265330687
wandb_entity: null
wandb_mode: online
wandb_name: c45098d1-819e-4d15-988b-1e7aa32b705d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c45098d1-819e-4d15-988b-1e7aa32b705d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c678b481-0ad6-4257-a56c-4d91becf4293

This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4520

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 4140

Training results

Training Loss Epoch Step Validation Loss
4.3494 0.0002 1 4.3327
0.5927 0.0215 100 0.6349
0.608 0.0430 200 0.5796
0.5354 0.0646 300 0.5645
0.6403 0.0861 400 0.5615
0.5192 0.1076 500 0.5449
0.5448 0.1291 600 0.5466
0.5212 0.1506 700 0.5367
0.5418 0.1722 800 0.5362
0.5331 0.1937 900 0.5267
0.5409 0.2152 1000 0.5253
0.4625 0.2367 1100 0.5164
0.5296 0.2582 1200 0.5211
0.4505 0.2798 1300 0.5087
0.4866 0.3013 1400 0.5103
0.5375 0.3228 1500 0.5059
0.4452 0.3443 1600 0.5032
0.5125 0.3658 1700 0.4982
0.4881 0.3874 1800 0.4961
0.4994 0.4089 1900 0.4927
0.5012 0.4304 2000 0.4886
0.4679 0.4519 2100 0.4882
0.5002 0.4734 2200 0.4848
0.4924 0.4950 2300 0.4808
0.5217 0.5165 2400 0.4782
0.4588 0.5380 2500 0.4752
0.4663 0.5595 2600 0.4734
0.4613 0.5811 2700 0.4707
0.4497 0.6026 2800 0.4701
0.449 0.6241 2900 0.4665
0.5207 0.6456 3000 0.4634
0.4806 0.6671 3100 0.4610
0.4238 0.6887 3200 0.4595
0.461 0.7102 3300 0.4572
0.507 0.7317 3400 0.4574
0.4169 0.7532 3500 0.4551
0.4393 0.7747 3600 0.4542
0.4432 0.7963 3700 0.4534
0.4521 0.8178 3800 0.4527
0.4717 0.8393 3900 0.4524
0.483 0.8608 4000 0.4520
0.463 0.8823 4100 0.4520

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/c678b481-0ad6-4257-a56c-4d91becf4293

Base model

Qwen/Qwen2.5-1.5B
Adapter
(283)
this model