Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: furiosa-ai/mlperf-gpt-j-6b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 84767cf69a1abdeb_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/84767cf69a1abdeb_train_data.json
  type:
    field_input: statements
    field_instruction: quiz
    field_output: solution_text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/dd01aad8-495d-41e8-943c-30ec49597b17
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 840
micro_batch_size: 4
mlflow_experiment_name: /tmp/84767cf69a1abdeb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: bd3a5c9d-56b2-4894-872a-514353553baf
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: bd3a5c9d-56b2-4894-872a-514353553baf
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

dd01aad8-495d-41e8-943c-30ec49597b17

This model is a fine-tuned version of furiosa-ai/mlperf-gpt-j-6b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0567

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 840

Training results

Training Loss Epoch Step Validation Loss
9.9723 0.0009 1 1.2495
0.8528 0.0920 100 0.1195
0.8563 0.1841 200 0.0999
0.7013 0.2761 300 0.0917
0.7745 0.3682 400 0.0895
0.6001 0.4602 500 0.0734
0.4537 0.5522 600 0.0634
0.4412 0.6443 700 0.0579
0.4835 0.7363 800 0.0567

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/dd01aad8-495d-41e8-943c-30ec49597b17

Adapter
(171)
this model