| Feature | 
Description | 
		
| Name | 
es_neg_uncert_ehr_ner | 
| Version | 
0.0.0 | 
| spaCy | 
>=3.7.2,<3.8.0 | 
| Default Pipeline | 
transformer, ner | 
| Components | 
transformer, ner | 
| Vectors | 
0 keys, 0 unique vectors (0 dimensions) | 
| Sources | 
n/a | 
| License | 
mit | 
| Author | 
Álvaro García Barragán | 
	
 
	
		
	
	
		Label Scheme
	
View label scheme (4 labels for 1 components)
	
		
| Component | 
Labels | 
		
ner | 
NEG, NSCO, UNC, USCO | 
	
 
 
	
		
	
	
		Accuracy
	
	
		
| Type | 
Score | 
		
ENTS_F | 
89.81 | 
ENTS_P | 
89.65 | 
ENTS_R | 
89.97 | 
TRANSFORMER_LOSS | 
34598.52 | 
NER_LOSS | 
35036.89 | 
	
 
	
		
	
	
		Citation
	
If you use our work in your research, please cite it as follows:
@INPROCEEDINGS{garcia-barraganCBMS2023,
  author={García-Barragán, Alvaro and Solarte-Pabón, Oswaldo and Nedostup, Georgiy and Provencio, Mariano and Menasalvas, Ernestina and Robles, Victor},
  booktitle={2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)},
  title={Structuring Breast Cancer Spanish Electronic Health Records Using Deep Learning},
  year={2023},
  pages={404-409},
  keywords={Natural Language Processing (NLP), Information extraction, Deep Learning, Breast cancer.},
  doi={10.1109/CBMS58004.2023.00252}
}
	
		
	
	
		Installing
	
!pip install pip==22.0.2
!pip install https://huggingface.co/Alvaro8gb/es_neg_uncert_ehr_ner/resolve/main/es_neg_uncert_ehr_ner-any-py3-none-any.whl
	
		
	
	
		Dataset
	
Corpus composed of 29,682 sentences obtained from anonymised health records annotated with negation and uncertainty.
@article{lima2020nubes,
  title={NUBes: A corpus of negation and uncertainty in Spanish clinical texts},
  author={Lima, Salvador and Perez, Naiara and Cuadros, Montse and Rigau, German},
  journal={arXiv preprint arXiv:2004.01092},
  year={2020}
}