TRIC-Trilingual Recognition of Irony with Confidence
Collection
This collections contains data and models used for the TRIC (Trilingual Recognition of Irony with Confidence) paper (under review)
•
17 items
•
Updated
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | F1 | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.2168 | 0.2105 | 100 | 1.0410 | 3.8466 | 1.9613 | 1.4687 | -0.2433 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 1.053 | 0.4211 | 200 | 1.0115 | 3.3031 | 1.8174 | 1.4738 | -0.0676 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 1.0263 | 0.6316 | 300 | 0.9647 | 2.7400 | 1.6553 | 1.4206 | 0.1144 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 0.9754 | 0.8421 | 400 | 0.9284 | 3.0990 | 1.7604 | 1.3448 | -0.0017 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 0.934 | 1.0526 | 500 | 0.8970 | 2.9576 | 1.7198 | 1.3110 | 0.0440 | 0.5388 | 0.7788 | 0.6690 | 0.6690 |
| 0.8667 | 1.2632 | 600 | 0.8632 | 2.8116 | 1.6768 | 1.2718 | 0.0912 | 0.6366 | 0.7004 | 0.7011 | 0.7011 |
| 0.8634 | 1.4737 | 700 | 0.8375 | 2.7817 | 1.6679 | 1.2347 | 0.1009 | 0.6477 | 0.6730 | 0.6940 | 0.6940 |
| 0.8294 | 1.6842 | 800 | 0.8966 | 3.0513 | 1.7468 | 1.2882 | 0.0137 | 0.6862 | 0.6831 | 0.6916 | 0.6916 |
| 0.819 | 1.8947 | 900 | 0.9153 | 3.1499 | 1.7748 | 1.3015 | -0.0181 | 0.6861 | 0.6845 | 0.6880 | 0.6880 |
| 0.7417 | 2.1053 | 1000 | 0.8207 | 2.8460 | 1.6870 | 1.1782 | 0.0801 | 0.6577 | 0.6891 | 0.7034 | 0.7034 |
| 0.7342 | 2.3158 | 1100 | 0.8174 | 2.8473 | 1.6874 | 1.1696 | 0.0797 | 0.6961 | 0.7058 | 0.7200 | 0.7200 |
| 0.695 | 2.5263 | 1200 | 0.8344 | 2.9407 | 1.7149 | 1.1834 | 0.0495 | 0.7104 | 0.7086 | 0.7129 | 0.7129 |
| 0.7682 | 2.7368 | 1300 | 0.8055 | 2.8003 | 1.6734 | 1.1563 | 0.0949 | 0.7252 | 0.7258 | 0.7367 | 0.7367 |
| 0.702 | 2.9474 | 1400 | 0.7758 | 2.6921 | 1.6408 | 1.1185 | 0.1298 | 0.7143 | 0.7198 | 0.7319 | 0.7319 |
| 0.6973 | 3.1579 | 1500 | 0.7973 | 2.8367 | 1.6842 | 1.1395 | 0.0831 | 0.7346 | 0.7332 | 0.7367 | 0.7367 |
| 0.6206 | 3.3684 | 1600 | 0.7865 | 2.7933 | 1.6713 | 1.1160 | 0.0971 | 0.7216 | 0.7240 | 0.7355 | 0.7355 |
| 0.6859 | 3.5789 | 1700 | 0.7750 | 2.7686 | 1.6639 | 1.1000 | 0.1051 | 0.7081 | 0.7257 | 0.7343 | 0.7343 |
| 0.6493 | 3.7895 | 1800 | 0.7721 | 2.7292 | 1.6520 | 1.0992 | 0.1178 | 0.7145 | 0.7313 | 0.7390 | 0.7390 |
| 0.6285 | 4.0 | 1900 | 0.8107 | 2.8467 | 1.6872 | 1.1415 | 0.0799 | 0.7194 | 0.7186 | 0.7295 | 0.7295 |
| 0.5887 | 4.2105 | 2000 | 0.8451 | 3.0451 | 1.7450 | 1.1710 | 0.0158 | 0.7240 | 0.7309 | 0.7200 | 0.7200 |
| 0.6098 | 4.4211 | 2100 | 0.7592 | 2.6481 | 1.6273 | 1.0817 | 0.1441 | 0.7194 | 0.7289 | 0.7390 | 0.7390 |
| 0.5907 | 4.6316 | 2200 | 0.7595 | 2.7178 | 1.6486 | 1.0643 | 0.1215 | 0.7230 | 0.7334 | 0.7426 | 0.7426 |
| 0.5555 | 4.8421 | 2300 | 0.7761 | 2.7759 | 1.6661 | 1.0820 | 0.1028 | 0.7304 | 0.7289 | 0.7378 | 0.7378 |
| 0.6021 | 5.0526 | 2400 | 0.7987 | 2.8809 | 1.6973 | 1.1033 | 0.0688 | 0.7221 | 0.7202 | 0.7295 | 0.7295 |
| 0.5504 | 5.2632 | 2500 | 0.7843 | 2.8168 | 1.6783 | 1.0895 | 0.0895 | 0.7370 | 0.7352 | 0.7426 | 0.7426 |
| 0.5052 | 5.4737 | 2600 | 0.7873 | 2.8846 | 1.6984 | 1.0834 | 0.0676 | 0.7401 | 0.7417 | 0.7509 | 0.7509 |
| 0.5171 | 5.6842 | 2700 | 0.7808 | 2.8328 | 1.6831 | 1.0866 | 0.0844 | 0.7317 | 0.7297 | 0.7367 | 0.7367 |
| 0.5395 | 5.8947 | 2800 | 0.7652 | 2.7540 | 1.6595 | 1.0682 | 0.1098 | 0.7322 | 0.7305 | 0.7390 | 0.7390 |
| 0.5247 | 6.1053 | 2900 | 0.7771 | 2.8384 | 1.6848 | 1.0703 | 0.0826 | 0.7256 | 0.7281 | 0.7390 | 0.7390 |
| 0.4707 | 6.3158 | 3000 | 0.8009 | 2.9554 | 1.7191 | 1.0902 | 0.0447 | 0.7231 | 0.7208 | 0.7284 | 0.7284 |
| 0.5139 | 6.5263 | 3100 | 0.7848 | 2.9021 | 1.7035 | 1.0748 | 0.0620 | 0.7360 | 0.7357 | 0.7450 | 0.7450 |
| 0.4924 | 6.7368 | 3200 | 0.7731 | 2.8285 | 1.6818 | 1.0634 | 0.0857 | 0.7182 | 0.7337 | 0.7414 | 0.7414 |
| 0.4907 | 6.9474 | 3300 | 0.7731 | 2.8268 | 1.6813 | 1.0574 | 0.0863 | 0.7209 | 0.7268 | 0.7378 | 0.7378 |
| 0.4836 | 7.1579 | 3400 | 0.7811 | 2.8490 | 1.6879 | 1.0718 | 0.0791 | 0.7252 | 0.7236 | 0.7331 | 0.7331 |
| 0.458 | 7.3684 | 3500 | 0.7863 | 2.9145 | 1.7072 | 1.0651 | 0.0580 | 0.7186 | 0.7201 | 0.7319 | 0.7319 |
| 0.4281 | 7.5789 | 3600 | 0.7782 | 2.8838 | 1.6982 | 1.0606 | 0.0679 | 0.7388 | 0.7377 | 0.7461 | 0.7461 |
| 0.4267 | 7.7895 | 3700 | 0.7914 | 2.9346 | 1.7131 | 1.0837 | 0.0515 | 0.7438 | 0.7452 | 0.7426 | 0.7426 |
| 0.474 | 8.0 | 3800 | 0.7600 | 2.7846 | 1.6687 | 1.0396 | 0.1000 | 0.7337 | 0.7350 | 0.7450 | 0.7450 |
| 0.4033 | 8.2105 | 3900 | 0.7654 | 2.8418 | 1.6858 | 1.0383 | 0.0815 | 0.7270 | 0.7357 | 0.7450 | 0.7450 |
| 0.4517 | 8.4211 | 4000 | 0.7807 | 2.9020 | 1.7035 | 1.0540 | 0.0620 | 0.7193 | 0.7239 | 0.7355 | 0.7355 |
| 0.4657 | 8.6316 | 4100 | 0.7809 | 2.8977 | 1.7023 | 1.0572 | 0.0634 | 0.7178 | 0.7212 | 0.7331 | 0.7331 |
| 0.4225 | 8.8421 | 4200 | 0.7971 | 2.9923 | 1.7298 | 1.0833 | 0.0328 | 0.7354 | 0.7338 | 0.7378 | 0.7378 |
| 0.4221 | 9.0526 | 4300 | 0.7862 | 2.9421 | 1.7153 | 1.0688 | 0.0490 | 0.7256 | 0.7238 | 0.7331 | 0.7331 |
Base model
microsoft/mdeberta-v3-base