OUTPUT_DIR3 / README.md
AssemGamal955's picture
End of training
6bb300a verified
metadata
library_name: transformers
language:
  - ar
  - en
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper
  - egyptian-arabic
  - translation
  - code-switching
  - generated_from_trainer
datasets:
  - Assemgamal955/egyptian-english-translation
metrics:
  - bleu
model-index:
  - name: Whisper Medium Egyptian Arabic --> english Translation
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Assemgamal955/egyptian-english-translation
          type: Assemgamal955/egyptian-english-translation
        metrics:
          - name: Bleu
            type: bleu
            value: 17.93015613103953

Whisper Medium Egyptian Arabic --> english Translation

This model is a fine-tuned version of openai/whisper-medium on the Assemgamal955/egyptian-english-translation dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0574
  • Model Preparation Time: 0.0101
  • Bleu: 17.9302

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Bleu
1.3837 1.0 1250 1.0422 0.0101 21.3456

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2