whisper-large-v3-mn-ft

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5834

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 6.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.4317 0.5903 500 0.7475
1.1836 1.1806 1000 0.5816
0.8169 1.7710 1500 0.5508
0.5782 2.3613 2000 0.5468
0.4928 2.9516 2500 0.5429
0.444 3.5419 3000 0.5626
0.2888 4.1322 3500 0.5678
0.283 4.7226 4000 0.5710
0.1823 5.3129 4500 0.5852
0.1725 5.9032 5000 0.5834

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Baysukk/whisper-large-v3-mn-ft

Adapter
(140)
this model