Model save
Browse files
README.md
CHANGED
|
@@ -8,60 +8,65 @@ model-index:
|
|
| 8 |
- name: whisper-large-v3-mn-ft
|
| 9 |
results: []
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
-
|
| 15 |
-
# whisper-large-v3-mn-ft
|
| 16 |
-
|
| 17 |
-
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset.
|
| 18 |
-
It achieves the following results on the evaluation set:
|
| 19 |
-
- Loss: 0.
|
| 20 |
-
|
| 21 |
-
## Model description
|
| 22 |
-
|
| 23 |
-
More information needed
|
| 24 |
-
|
| 25 |
-
## Intended uses & limitations
|
| 26 |
-
|
| 27 |
-
More information needed
|
| 28 |
-
|
| 29 |
-
## Training and evaluation data
|
| 30 |
-
|
| 31 |
-
More information needed
|
| 32 |
-
|
| 33 |
-
## Training procedure
|
| 34 |
-
|
| 35 |
-
### Training hyperparameters
|
| 36 |
-
|
| 37 |
-
The following hyperparameters were used during training:
|
| 38 |
-
- learning_rate: 0.0001
|
| 39 |
-
- train_batch_size: 4
|
| 40 |
-
- eval_batch_size: 4
|
| 41 |
-
- seed: 42
|
| 42 |
-
- gradient_accumulation_steps: 4
|
| 43 |
-
- total_train_batch_size: 16
|
| 44 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 45 |
-
- lr_scheduler_type: linear
|
| 46 |
-
- lr_scheduler_warmup_steps: 500
|
| 47 |
-
- num_epochs:
|
| 48 |
-
- mixed_precision_training: Native AMP
|
| 49 |
-
|
| 50 |
-
### Training results
|
| 51 |
-
|
| 52 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
| 53 |
-
|:-------------:|:------:|:----:|:---------------:|
|
| 54 |
-
| 2.4317 | 0.5903 | 500 | 0.7475 |
|
| 55 |
-
| 1.1836 | 1.1806 | 1000 | 0.5816 |
|
| 56 |
-
| 0.8169 | 1.7710 | 1500 | 0.5508 |
|
| 57 |
-
| 0.5782 | 2.3613 | 2000 | 0.5468 |
|
| 58 |
-
| 0.4928 | 2.9516 | 2500 | 0.5429 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
- name: whisper-large-v3-mn-ft
|
| 9 |
results: []
|
| 10 |
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# whisper-large-v3-mn-ft
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.5834
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 0.0001
|
| 39 |
+
- train_batch_size: 4
|
| 40 |
+
- eval_batch_size: 4
|
| 41 |
+
- seed: 42
|
| 42 |
+
- gradient_accumulation_steps: 4
|
| 43 |
+
- total_train_batch_size: 16
|
| 44 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 45 |
+
- lr_scheduler_type: linear
|
| 46 |
+
- lr_scheduler_warmup_steps: 500
|
| 47 |
+
- num_epochs: 6.0
|
| 48 |
+
- mixed_precision_training: Native AMP
|
| 49 |
+
|
| 50 |
+
### Training results
|
| 51 |
+
|
| 52 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 53 |
+
|:-------------:|:------:|:----:|:---------------:|
|
| 54 |
+
| 2.4317 | 0.5903 | 500 | 0.7475 |
|
| 55 |
+
| 1.1836 | 1.1806 | 1000 | 0.5816 |
|
| 56 |
+
| 0.8169 | 1.7710 | 1500 | 0.5508 |
|
| 57 |
+
| 0.5782 | 2.3613 | 2000 | 0.5468 |
|
| 58 |
+
| 0.4928 | 2.9516 | 2500 | 0.5429 |
|
| 59 |
+
| 0.444 | 3.5419 | 3000 | 0.5626 |
|
| 60 |
+
| 0.2888 | 4.1322 | 3500 | 0.5678 |
|
| 61 |
+
| 0.283 | 4.7226 | 4000 | 0.5710 |
|
| 62 |
+
| 0.1823 | 5.3129 | 4500 | 0.5852 |
|
| 63 |
+
| 0.1725 | 5.9032 | 5000 | 0.5834 |
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
### Framework versions
|
| 67 |
+
|
| 68 |
+
- PEFT 0.15.2
|
| 69 |
+
- Transformers 4.51.3
|
| 70 |
+
- Pytorch 2.1.0+cu118
|
| 71 |
+
- Datasets 2.14.5
|
| 72 |
+
- Tokenizers 0.21.1
|