bert_base_for_whole_train_result_Spam-Ham_farshad_2_2

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0467
  • Accuracy: 0.9933
  • F1: 0.9936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6311 2.9250 50 0.4131 0.8675 0.8695
0.2324 5.8501 100 0.0975 0.9713 0.9719
0.0534 8.7751 150 0.0385 0.9869 0.9873
0.0218 11.7002 200 0.0464 0.9852 0.9856
0.0121 14.6252 250 0.0463 0.9858 0.9862
0.0078 17.5503 300 0.0367 0.9916 0.9919
0.0082 20.4753 350 0.0346 0.9922 0.9924
0.0043 23.4004 400 0.0463 0.9904 0.9907
0.0037 26.3254 450 0.0576 0.9887 0.9890
0.0039 29.2505 500 0.0392 0.9916 0.9919
0.0021 32.1755 550 0.0453 0.9907 0.9910
0.0017 35.1005 600 0.0443 0.9913 0.9916
0.0025 38.0256 650 0.0488 0.9901 0.9905
0.0012 40.9506 700 0.0510 0.9919 0.9921
0.0017 43.8757 750 0.0522 0.9910 0.9913
0.0011 46.8007 800 0.0446 0.9927 0.9930
0.0016 49.7258 850 0.0373 0.9927 0.9930
0.0014 52.6508 900 0.0448 0.9916 0.9919
0.0009 55.5759 950 0.0460 0.9930 0.9933
0.0009 58.5009 1000 0.0842 0.9846 0.9850
0.0016 61.4260 1050 0.0356 0.9939 0.9941
0.0009 64.3510 1100 0.0390 0.9933 0.9936
0.0007 67.2761 1150 0.0324 0.9945 0.9947
0.0005 70.2011 1200 0.0434 0.9925 0.9927
0.0005 73.1261 1250 0.0498 0.9893 0.9896
0.0005 76.0512 1300 0.0460 0.9930 0.9933
0.0004 78.9762 1350 0.0480 0.9930 0.9933
0.0004 81.9013 1400 0.0477 0.9930 0.9933
0.0004 84.8263 1450 0.0494 0.9930 0.9933
0.0004 87.7514 1500 0.0490 0.9933 0.9936
0.0004 90.6764 1550 0.0497 0.9933 0.9936
0.0004 93.6015 1600 0.0506 0.9933 0.9936
0.0004 96.5265 1650 0.0467 0.9933 0.9936

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_2_2

Finetuned
(6205)
this model

Evaluation results