bert_base_for_whole_train_result_Spam-Ham_farshad_half_2_1

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0646
  • Accuracy: 0.9907
  • F1: 0.9910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6201 5.8501 50 0.4069 0.8947 0.8909
0.2195 11.7002 100 0.0824 0.9739 0.9743
0.0427 17.5503 150 0.0741 0.9756 0.9760
0.0161 23.4004 200 0.0413 0.9896 0.9899
0.0084 29.2505 250 0.0548 0.9867 0.9870
0.006 35.1005 300 0.0691 0.9855 0.9859
0.0043 40.9506 350 0.0651 0.9867 0.9870
0.0034 46.8007 400 0.0622 0.9887 0.9890
0.0042 52.6508 450 0.0451 0.9910 0.9913
0.0015 58.5009 500 0.0694 0.9875 0.9879
0.0012 64.3510 550 0.0817 0.9855 0.9859
0.0019 70.2011 600 0.0930 0.9829 0.9833
0.0016 76.0512 650 0.0737 0.9881 0.9884
0.0009 81.9013 700 0.0548 0.9916 0.9919
0.0012 87.7514 750 0.0645 0.9907 0.9910
0.0009 93.6015 800 0.0646 0.9907 0.9910

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_half_2_1

Finetuned
(6174)
this model