CheeLi03's picture
Upload tokenizer
9c5014a verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - el
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Greek Punctuation 4k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: el_gr
          split: None
          args: 'config: el split: test'
        metrics:
          - type: wer
            value: 99.23901535203812
            name: Wer

Whisper Base Greek Punctuation 4k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6252
  • Wer: 99.2390

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2031 4.5872 1000 0.4958 91.1858
0.0263 9.1743 2000 0.5481 78.0903
0.0067 13.7615 3000 0.6062 94.7194
0.0045 18.3486 4000 0.6252 99.2390

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1