llama2-7b-coding-fft

This model is a Full Fine-Tuned (FFT) version of LLaMA2-7B on coding datasets, trained as part of replicating the Mask Fine-Tuning (MFT) paper.

Model Details

  • Base Model: meta-llama/Llama-2-7b-hf
  • Training Type: Full Fine-Tuning (FFT)
  • Domain: Coding
  • Hardware: TPU v4-8
  • Training Framework: PyTorch + torch_xla

Training Data

The model was trained on 30,000 samples from three coding datasets (matching the paper):

  • Tulu 3 Persona Python: 10,000 samples
  • Evol CodeAlpaca: 10,000 samples
  • Code-Alpaca: 10,000 samples

Training Configuration

  • Epochs: 2
  • Sequence Length: 4096
  • Learning Rate: 2e-5
  • Batch Size: 8 (effective)
  • Optimizer: AdamW
  • LR Scheduler: Linear with warmup
  • Mixed Precision: bfloat16

Training Results

  • Final Loss: 0.15353151041666666
  • Final Perplexity: 1.1673020833333334
  • Training Time: ~7 hours on TPU v4-8
  • Total Steps: 7500

Loss Progression

  • Epoch 0: 0.42591484375
  • Epoch 1: 0.15353151041666666

Intended Use

This model serves as the FFT baseline for the Mask Fine-Tuning paper replication. It will be evaluated on:

  • HumanEval (code generation benchmark)
  • Target: Match paper's FFT baseline of 29.3%

Evaluation

Evaluation on HumanEval is pending. Results will be updated here once available.

Citation

If you use this model, please cite the original MFT paper:

@article{mft2025,
  title={Mask Fine-Tuning},
  author={[Authors from paper]},
  journal={arXiv preprint arXiv:2503.22764v1},
  year={2025}
}

Reproducibility

Training configuration and code available at: GitHub Repository

License

This model inherits the LLaMA 2 Community License from the base model.

Downloads last month
26
Safetensors
Model size
2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Chrisfrancisque/llama2-7b-coding-fft

Finetuned
(1094)
this model