SDNQ
					Collection
				
Models quantized with SDNQ
					• 
				17 items
				• 
				Updated
					
				•
					
					2
4 bit (UINT4 with SVD rank 32) quantization of black-forest-labs/FLUX.1-Kontext-dev using SDNQ.
Usage:
pip install git+https://github.com/Disty0/sdnq
import torch
import diffusers
from diffusers.utils import load_image
from sdnq import SDNQConfig # import sdnq to register it into diffusers and transformers
pipe = diffusers.FluxKontextPipeline.from_pretrained("Disty0/FLUX.1-Kontext-dev-SDNQ-uint4-svd-r32", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png")
image = pipe(
    image=input_image,
    prompt="Add a hat to the cat",
    guidance_scale=2.5,
    generator=torch.manual_seed(0),
).images[0]
image.save("flux-kontext-dev-sdnq-uint4-svd-r32.png.png")
Original BF16 vs SDNQ quantization comparison:
Base model
black-forest-labs/FLUX.1-Kontext-dev