π§ SALAMA LLM β Swahili Instruction-Tuned Text Generation Model
π¨βπ» Developer: AI4NNOV
βοΈ Authors: AI4NNOV
π¦ Version: v1.0
π License: Apache 2.0
π οΈ Model Type: Instruction-Tuned Large Language Model
π§© Base Model: Jacaranda/UlizaLlama
π Overview
SALAMA LLM is the language understanding and generation engine of the SALAMA Framework β a modular Speech-to-Speech (STS) AI pipeline built for African languages.
The model is fine-tuned on Swahili instruction datasets to enable natural, culturally relevant responses in text generation, summarization, question answering, and translation.
This model represents a major step in bridging the linguistic digital divide by providing high-quality Swahili AI text generation capabilities within an open, scalable framework.
π§±οΈ Model Architecture
SALAMA LLM is based on Jacaranda/UlizaLlama, fine-tuned using Parameter-Efficient Fine-Tuning (PEFT) via LoRA/QLoRA.
The architecture supports mixed Swahili-English text inputs while focusing on fluent Swahili text generation for both casual and formal domains.
| Parameter | Value |
|---|---|
| Base Model | Jacaranda/UlizaLlama |
| Fine-Tuning | QLoRA / LoRA (PEFT) |
| Precision | 4-bit quantization |
| Optimizer | AdamW |
| Learning Rate | 2e-5 |
| Epochs | 3β5 |
| Frameworks | Transformers, TRL, PEFT, Unsloth |
| Languages | Swahili (sw), English (en) |
π Datasets
| Dataset | Description | Purpose |
|---|---|---|
saillab/alpaca_swahili_taco |
Swahili Alpaca-style instruction-response dataset | Instruction tuning |
Jacaranda/kiswallama-pretrained |
321M Swahili tokens, custom tokenizer (20K vocab) | Base Swahili adaptation |
| Custom Swahili QA corpus | Curated Q&A and summarization samples | Conversational fine-tuning |
π§ Model Capabilities
β
Text generation in Swahili and English
β
Instruction-following, summarization, and dialogue
β
Question answering and translation (EN β SW)
β
Sentiment and named-entity recognition
β
Contextually and culturally aligned text generation
π Evaluation Metrics
| Metric | Score | Description |
|---|---|---|
| BLEU | 0.49 | Measures fluency and translation accuracy |
| ROUGE-L | 0.61 | Summarization recall and overlap |
| Accuracy (QA) | 95.5% | Accuracy on Swahili QA tasks |
| CER | 0.28 | Character Error Rate |
| F1 (avg) | 0.90+ | Weighted average across tasks |
βοΈ Usage (Python Example)
Below is a quick example to load and use SALAMA LLM for Swahili text generation:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
model_name = "EYEDOL/salama-llm" # Change to your Hugging Face repo name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Swahili text prompt
prompt = "Andika sentensi fupi kuhusu umuhimu wa elimu."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=120,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.05
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
𦩠Example Output:
βElimu ni msingi wa maendeleo, humwezesha mtu kuelewa dunia na kuboresha maisha yake na jamii kwa ujumla.β
β‘ Key Features
- π§© Optimized for African low-resource NLP contexts
- π¬ Instruction-following in Swahili and English
- βοΈ Lightweight and efficient (QLoRA fine-tuned; runs on single 24 GB GPU)
- π Culturally aligned text generation
- π¦Ά Open-source and extendable to other African languages
π« Limitations
- β οΈ May underperform with heavy code-switching (Swahili-English mix)
- π€ Not yet optimized for rare dialects or poetic forms
- π Limited exposure to specialized (medical/legal) corpora
- π Relies on accurate STT transcription in end-to-end speech-to-speech use
π Related Models
| Model | Description |
|---|---|
EYEDOL/salama-stt |
Swahili Speech-to-Text model (Whisper-small fine-tuned) |
EYEDOL/salama-tts |
Swahili Text-to-Speech model (VITS architecture) |
π§Ύ Citation
If you use SALAMA LLM, please cite:
@misc{salama_llm_2025,
title={SALAMA LLM: Swahili Instruction-Tuned Text Generation Model},
author={AI4NNOV},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/EYEDOL/salama-llm}}
}
π‘ βElimu ni msingi wa maendeleo β Knowledge is the foundation of progress.β