EYEDOL commited on
Commit
98be87c
Β·
verified Β·
1 Parent(s): cee8898

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -54
README.md CHANGED
@@ -22,12 +22,12 @@ pipeline_tag: text-generation
22
 
23
  # 🧠 SALAMA LLM β€” Swahili Instruction-Tuned Text Generation Model
24
 
25
- **Developer:** DressMatic AI Labs / EYEDOL Research
26
- **Authors:** Israel Adegoke et al.
27
  **Version:** v1.0
28
  **License:** Apache 2.0
29
  **Model Type:** Instruction-Tuned Large Language Model
30
- **Base Model:** `unsloth/llama-3.2-3b-instruct`
31
 
32
  ---
33
 
@@ -42,12 +42,12 @@ This model represents a major step in bridging the linguistic digital divide by
42
 
43
  ## 🧱 Model Architecture
44
 
45
- SALAMA LLM is based on **Unsloth’s optimized Llama-3.2-3B-Instruct**, fine-tuned using **Parameter-Efficient Fine-Tuning (PEFT)** via **LoRA/QLoRA**.
46
  The architecture supports mixed Swahili-English text inputs while focusing on fluent Swahili text generation for both casual and formal domains.
47
 
48
  | Parameter | Value |
49
  |------------|--------|
50
- | Base Model | `unsloth/llama-3.2-3b-instruct` |
51
  | Fine-Tuning | QLoRA / LoRA (PEFT) |
52
  | Precision | 4-bit quantization |
53
  | Optimizer | AdamW |
@@ -128,24 +128,13 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
128
 
129
  ---
130
 
131
- ## πŸ” Model Performance Summary
132
-
133
- | Task | Model | F1 | BLEU | ROUGE-L | Accuracy |
134
- |------|--------|----|-------|----------|-----------|
135
- | Sentiment Analysis | SALAMA LLM | 0.96 | β€” | β€” | 97.9% |
136
- | Translation | SALAMA LLM | β€” | 0.49 | 0.61 | β€” |
137
- | Q&A | SALAMA LLM | 0.88 | 0.50 | 0.59 | 95.5% |
138
- | Named Entity Recognition | SALAMA LLM | 0.89 | β€” | β€” | β€” |
139
-
140
- ---
141
-
142
  ## ⚑ Key Features
143
 
144
- - 🧩 **Optimized for African low-resource NLP contexts**
145
- - πŸ’¬ **Instruction-following in Swahili and English**
146
- - βš™οΈ **Lightweight and efficient** (QLoRA-fine-tuned, runs on single 24 GB GPU)
147
- - 🌍 **Culturally aligned text generation**
148
- - πŸͺΆ **Open-source and extendable** to other African languages
149
 
150
  ---
151
 
@@ -165,36 +154,3 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
165
  | [`EYEDOL/salama-stt`](https://huggingface.co/EYEDOL/salama-stt) | Swahili Speech-to-Text model (Whisper-small fine-tuned) |
166
  | [`EYEDOL/salama-tts`](https://huggingface.co/EYEDOL/salama-tts) | Swahili Text-to-Speech model (VITS architecture) |
167
 
168
- ---
169
-
170
- ## πŸ“œ Citation
171
-
172
- If you use this model in your research or development, please cite:
173
-
174
- > **Adegoke, I., et al. (2025).** *SALAMA: Scalable African Language Multimodal AI Framework.*
175
- > DressMatic AI Labs / EYEDOL Research. Technical Report.
176
-
177
- ---
178
-
179
- ## 🀝 Acknowledgements
180
-
181
- We acknowledge the contributions of:
182
-
183
- - **Masakhane** β€” advancing open African NLP research
184
- - **Jacaranda AI** β€” for UlizaLlama and Swahili pretraining corpora
185
- - **Google Research** β€” for Gemma multilingual models
186
- - **Meta AI** β€” for open-weight Llama foundation models
187
-
188
- ---
189
-
190
- ## πŸͺ„ License
191
-
192
- This model is released under the **Apache 2.0 License**.
193
- You are free to use, modify, and distribute for research and commercial purposes with proper attribution.
194
-
195
- ---
196
-
197
- **Model Family:** *SALAMA β€” Scalable African LAnguage Multimodal AI Framework*
198
- **Maintainer:** [EYEDOL Research / DressMatic AI Labs]
199
- **Contact:** [email protected]
200
- **Repository:** [https://huggingface.co/EYEDOL/salama-llm](https://huggingface.co/EYEDOL/salama-llm)
 
22
 
23
  # 🧠 SALAMA LLM β€” Swahili Instruction-Tuned Text Generation Model
24
 
25
+ **Developer:** AI4NNOV
26
+ **Authors:** AI4NNOV.
27
  **Version:** v1.0
28
  **License:** Apache 2.0
29
  **Model Type:** Instruction-Tuned Large Language Model
30
+ **Base Model:** `Jacaranda/UlizaLlama`
31
 
32
  ---
33
 
 
42
 
43
  ## 🧱 Model Architecture
44
 
45
+ SALAMA LLM is based on **Jacaranda/UlizaLlama**, fine-tuned using **Parameter-Efficient Fine-Tuning (PEFT)** via **LoRA/QLoRA**.
46
  The architecture supports mixed Swahili-English text inputs while focusing on fluent Swahili text generation for both casual and formal domains.
47
 
48
  | Parameter | Value |
49
  |------------|--------|
50
+ | Base Model | `Jacaranda/UlizaLlama` |
51
  | Fine-Tuning | QLoRA / LoRA (PEFT) |
52
  | Precision | 4-bit quantization |
53
  | Optimizer | AdamW |
 
128
 
129
  ---
130
 
 
 
 
 
 
 
 
 
 
 
 
131
  ## ⚑ Key Features
132
 
133
+ - 🧩 Optimized for African low-resource NLP contexts
134
+ - πŸ’¬ Instruction-following in Swahili and English
135
+ - βš™οΈ Lightweight and efficient** (QLoRA-fine-tuned, runs on single 24 GB GPU)
136
+ - 🌍 Culturally aligned text generation
137
+ - πŸͺΆ Open-source and extendable to other African languages
138
 
139
  ---
140
 
 
154
  | [`EYEDOL/salama-stt`](https://huggingface.co/EYEDOL/salama-stt) | Swahili Speech-to-Text model (Whisper-small fine-tuned) |
155
  | [`EYEDOL/salama-tts`](https://huggingface.co/EYEDOL/salama-tts) | Swahili Text-to-Speech model (VITS architecture) |
156