Update README.md
Browse files
README.md
CHANGED
|
@@ -22,12 +22,12 @@ pipeline_tag: text-generation
|
|
| 22 |
|
| 23 |
# π§ SALAMA LLM β Swahili Instruction-Tuned Text Generation Model
|
| 24 |
|
| 25 |
-
**Developer:**
|
| 26 |
-
**Authors:**
|
| 27 |
**Version:** v1.0
|
| 28 |
**License:** Apache 2.0
|
| 29 |
**Model Type:** Instruction-Tuned Large Language Model
|
| 30 |
-
**Base Model:** `
|
| 31 |
|
| 32 |
---
|
| 33 |
|
|
@@ -42,12 +42,12 @@ This model represents a major step in bridging the linguistic digital divide by
|
|
| 42 |
|
| 43 |
## π§± Model Architecture
|
| 44 |
|
| 45 |
-
SALAMA LLM is based on **
|
| 46 |
The architecture supports mixed Swahili-English text inputs while focusing on fluent Swahili text generation for both casual and formal domains.
|
| 47 |
|
| 48 |
| Parameter | Value |
|
| 49 |
|------------|--------|
|
| 50 |
-
| Base Model | `
|
| 51 |
| Fine-Tuning | QLoRA / LoRA (PEFT) |
|
| 52 |
| Precision | 4-bit quantization |
|
| 53 |
| Optimizer | AdamW |
|
|
@@ -128,24 +128,13 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
| 128 |
|
| 129 |
---
|
| 130 |
|
| 131 |
-
## π Model Performance Summary
|
| 132 |
-
|
| 133 |
-
| Task | Model | F1 | BLEU | ROUGE-L | Accuracy |
|
| 134 |
-
|------|--------|----|-------|----------|-----------|
|
| 135 |
-
| Sentiment Analysis | SALAMA LLM | 0.96 | β | β | 97.9% |
|
| 136 |
-
| Translation | SALAMA LLM | β | 0.49 | 0.61 | β |
|
| 137 |
-
| Q&A | SALAMA LLM | 0.88 | 0.50 | 0.59 | 95.5% |
|
| 138 |
-
| Named Entity Recognition | SALAMA LLM | 0.89 | β | β | β |
|
| 139 |
-
|
| 140 |
-
---
|
| 141 |
-
|
| 142 |
## β‘ Key Features
|
| 143 |
|
| 144 |
-
- π§©
|
| 145 |
-
- π¬
|
| 146 |
-
- βοΈ
|
| 147 |
-
- π
|
| 148 |
-
- πͺΆ
|
| 149 |
|
| 150 |
---
|
| 151 |
|
|
@@ -165,36 +154,3 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
| 165 |
| [`EYEDOL/salama-stt`](https://huggingface.co/EYEDOL/salama-stt) | Swahili Speech-to-Text model (Whisper-small fine-tuned) |
|
| 166 |
| [`EYEDOL/salama-tts`](https://huggingface.co/EYEDOL/salama-tts) | Swahili Text-to-Speech model (VITS architecture) |
|
| 167 |
|
| 168 |
-
---
|
| 169 |
-
|
| 170 |
-
## π Citation
|
| 171 |
-
|
| 172 |
-
If you use this model in your research or development, please cite:
|
| 173 |
-
|
| 174 |
-
> **Adegoke, I., et al. (2025).** *SALAMA: Scalable African Language Multimodal AI Framework.*
|
| 175 |
-
> DressMatic AI Labs / EYEDOL Research. Technical Report.
|
| 176 |
-
|
| 177 |
-
---
|
| 178 |
-
|
| 179 |
-
## π€ Acknowledgements
|
| 180 |
-
|
| 181 |
-
We acknowledge the contributions of:
|
| 182 |
-
|
| 183 |
-
- **Masakhane** β advancing open African NLP research
|
| 184 |
-
- **Jacaranda AI** β for UlizaLlama and Swahili pretraining corpora
|
| 185 |
-
- **Google Research** β for Gemma multilingual models
|
| 186 |
-
- **Meta AI** β for open-weight Llama foundation models
|
| 187 |
-
|
| 188 |
-
---
|
| 189 |
-
|
| 190 |
-
## πͺ License
|
| 191 |
-
|
| 192 |
-
This model is released under the **Apache 2.0 License**.
|
| 193 |
-
You are free to use, modify, and distribute for research and commercial purposes with proper attribution.
|
| 194 |
-
|
| 195 |
-
---
|
| 196 |
-
|
| 197 |
-
**Model Family:** *SALAMA β Scalable African LAnguage Multimodal AI Framework*
|
| 198 |
-
**Maintainer:** [EYEDOL Research / DressMatic AI Labs]
|
| 199 |
-
**Contact:** [email protected]
|
| 200 |
-
**Repository:** [https://huggingface.co/EYEDOL/salama-llm](https://huggingface.co/EYEDOL/salama-llm)
|
|
|
|
| 22 |
|
| 23 |
# π§ SALAMA LLM β Swahili Instruction-Tuned Text Generation Model
|
| 24 |
|
| 25 |
+
**Developer:** AI4NNOV
|
| 26 |
+
**Authors:** AI4NNOV.
|
| 27 |
**Version:** v1.0
|
| 28 |
**License:** Apache 2.0
|
| 29 |
**Model Type:** Instruction-Tuned Large Language Model
|
| 30 |
+
**Base Model:** `Jacaranda/UlizaLlama`
|
| 31 |
|
| 32 |
---
|
| 33 |
|
|
|
|
| 42 |
|
| 43 |
## π§± Model Architecture
|
| 44 |
|
| 45 |
+
SALAMA LLM is based on **Jacaranda/UlizaLlama**, fine-tuned using **Parameter-Efficient Fine-Tuning (PEFT)** via **LoRA/QLoRA**.
|
| 46 |
The architecture supports mixed Swahili-English text inputs while focusing on fluent Swahili text generation for both casual and formal domains.
|
| 47 |
|
| 48 |
| Parameter | Value |
|
| 49 |
|------------|--------|
|
| 50 |
+
| Base Model | `Jacaranda/UlizaLlama` |
|
| 51 |
| Fine-Tuning | QLoRA / LoRA (PEFT) |
|
| 52 |
| Precision | 4-bit quantization |
|
| 53 |
| Optimizer | AdamW |
|
|
|
|
| 128 |
|
| 129 |
---
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
## β‘ Key Features
|
| 132 |
|
| 133 |
+
- π§© Optimized for African low-resource NLP contexts
|
| 134 |
+
- π¬ Instruction-following in Swahili and English
|
| 135 |
+
- βοΈ Lightweight and efficient** (QLoRA-fine-tuned, runs on single 24 GB GPU)
|
| 136 |
+
- π Culturally aligned text generation
|
| 137 |
+
- πͺΆ Open-source and extendable to other African languages
|
| 138 |
|
| 139 |
---
|
| 140 |
|
|
|
|
| 154 |
| [`EYEDOL/salama-stt`](https://huggingface.co/EYEDOL/salama-stt) | Swahili Speech-to-Text model (Whisper-small fine-tuned) |
|
| 155 |
| [`EYEDOL/salama-tts`](https://huggingface.co/EYEDOL/salama-tts) | Swahili Text-to-Speech model (VITS architecture) |
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|