NVILA-Lite-2B-hf-0626 / processing_vila.py
AndyZijianZhang's picture
Upload files with `vila-upload`.
7d97786 verified
import uuid
from typing import List, Optional, Tuple, cast
import transformers.image_transforms as image_transforms
import transformers.image_utils as image_utils
import transformers.utils.logging
import transformers.video_utils as video_utils
from PIL.Image import Image
from torch import Tensor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_processing_utils import BaseImageProcessor
from transformers.image_processing_utils_fast import BaseImageProcessorFast
from transformers.image_utils import ImageInput
from transformers.models.siglip.image_processing_siglip import SiglipImageProcessor
from transformers.models.siglip.image_processing_siglip_fast import SiglipImageProcessorFast
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TextInput
from transformers.video_utils import VideoInput
logger = transformers.utils.logging.get_logger(__name__)
class VILAProcessorProcessingKwargs(ProcessingKwargs, total=False):
_defaults = {} # type: ignore
class VILAProcessorOutput(BatchFeature):
input_ids: List[List[int]] | Tensor
attention_mask: List[List[int]] | Tensor
pixel_values: Optional[List[Tensor] | Tensor]
class VILAProcessor(ProcessorMixin):
attributes: List[str] = [
"image_processor",
"tokenizer",
]
image_processor_class: str = "AutoImageProcessor"
tokenizer_class: str = "AutoTokenizer"
_auto_class: str = "AutoProcessor"
valid_kwargs: List[str] = [
"chat_template",
"image_pad_len",
"max_tiles",
"min_tiles",
"video_max_tiles",
]
# Attributes.
image_processor: BaseImageProcessor | BaseImageProcessorFast
tokenizer: PreTrainedTokenizerBase
# Configuration parameters.
image_pad_len: int
max_tiles: int
min_tiles: int
video_max_tiles: int
def __init__(
self,
image_processor: BaseImageProcessor,
tokenizer: PreTrainedTokenizer,
*,
image_pad_len: int = 121,
max_tiles: int = 12,
min_tiles: int = 1,
video_max_tiles: int = 1,
**kwargs,
):
super().__init__(
image_processor,
tokenizer,
**kwargs,
)
self.image_pad_len = image_pad_len
self.max_tiles = max_tiles
self.min_tiles = min_tiles
self.video_max_tiles = video_max_tiles
def __call__(
self,
text: TextInput | List[TextInput],
images: Optional[ImageInput] = None,
videos: Optional[VideoInput] = None,
**kwargs: Unpack[ProcessingKwargs],
) -> VILAProcessorOutput:
"""Preprocesses inputs for VILA.
Args:
text: The text to be processed.
images: The images to be processed.
videos: The videos to be processed.
**kwargs: Additional arguments for processing.
Returns:
The processed inputs that can be fed to the model.
"""
merged_kwargs = self._merge_kwargs(
VILAProcessorProcessingKwargs, # type: ignore
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
normalized_text, normalized_images, normalized_videos = self._normalize_inputs(
text=text,
images=images,
videos=videos,
)
preprocessed_text, preprocessed_media_tiles = self._preprocess_inputs(
text=normalized_text,
images=normalized_images,
videos=normalized_videos,
)
text_inputs = self.tokenizer.__call__(
preprocessed_text,
**merged_kwargs["text_kwargs"],
)
if len(preprocessed_media_tiles) > 0:
image_inputs = self.image_processor.__call__(
preprocessed_media_tiles,
**merged_kwargs["images_kwargs"],
)
else:
image_inputs = BatchFeature()
text_inputs = self._replace_image_tile_suffix(text_inputs)
return VILAProcessorOutput(
data={
**text_inputs,
**image_inputs,
}
)
def _find_media_token_order(self, text: List[str]) -> List[str]:
"""Finds the order of media tokens in the text.
Args:
text: The text to be processed.
Returns:
The order of media tokens in the text. Each item is either an image token or a video
token.
"""
image_token = cast(str, self.tokenizer.image_token)
video_token = cast(str, self.tokenizer.video_token)
return_order: List[str] = []
for text_item in text:
while image_token in text_item or video_token in text_item:
image_pos = text_item.find(image_token)
video_pos = text_item.find(video_token)
if image_pos == -1 and video_pos == -1:
# If no media token found, move to the next text item.
break
elif image_pos == -1:
# If only video token found, add it to the return order.
return_order.append(video_token)
text_item = text_item[video_pos + len(video_token) :]
elif video_pos == -1:
# If only image token found, add it to the return order.
return_order.append(image_token)
text_item = text_item[image_pos + len(image_token) :]
else:
# If both tokens found, choose the one that appears first.
if image_pos < video_pos:
return_order.append(image_token)
text_item = text_item[image_pos + len(image_token) :]
else:
return_order.append(video_token)
text_item = text_item[video_pos + len(video_token) :]
return return_order
def _generate_image_token_placeholder(self, text: List[str]) -> str:
while True:
placeholder = f"<|image_placeholder_{str(uuid.uuid4())}|>"
if all(placeholder not in text_item for text_item in text):
return placeholder
def _merge_media_tiles(
self,
image_tiles: List[List[Image]],
video_tiles: List[List[List[Image]]],
media_token_order: List[str],
) -> List[Image]:
"""Merges the media tiles by the media token order.
Args:
image_tiles: The image tiles.
video_tiles: The video tiles.
media_token_order: The order of media tokens in the text.
Returns:
The merged media tiles.
"""
image_token = cast(str, self.tokenizer.image_token)
video_token = cast(str, self.tokenizer.video_token)
image_tiles_idx = 0
video_tiles_idx = 0
return_tiles: List[Image] = []
for media_token in media_token_order:
if media_token == image_token:
return_tiles.extend(image_tiles[image_tiles_idx])
image_tiles_idx += 1
elif media_token == video_token:
for video_tile in video_tiles[video_tiles_idx]:
return_tiles.extend(video_tile)
video_tiles_idx += 1
else:
raise ValueError(f"Invalid media token: {media_token}")
return return_tiles
def _normalize_inputs(
self,
text: TextInput | List[TextInput],
images: Optional[ImageInput],
videos: Optional[VideoInput],
) -> Tuple[List[str], List[Image], List[List[Image]]]:
"""Normalizes text, image, and video inputs for processing.
This method converts various input formats into standardized lists of PIL images
and text strings that can be processed by the model.
Args:
text: The original input text.
images: The original input images.
videos: The original input videos.
Returns:
The text as a list of strings.
The images as a list of PIL images.
The videos as a list of lists of PIL images.
"""
prepared_text = text if isinstance(text, list) else [text]
if images is not None:
image_list = cast(List, image_utils.make_flat_list_of_images(images))
prepared_images = [cast(Image, image_transforms.to_pil_image(image)) for image in image_list]
else:
prepared_images = []
if videos is not None:
video_list = cast(List[List], video_utils.make_batched_videos(videos))
prepared_videos = [
[cast(Image, image_transforms.to_pil_image(image)) for image in video] for video in video_list
]
else:
prepared_videos = []
return prepared_text, prepared_images, prepared_videos
def _pad_image_tiles(
self,
text: List[str],
) -> List[str]:
"""Pads each media tile.
This will pad each <image> to (self.image_pad_len + 1) times. The additional one padding is
for the \\n token suffix.
Args:
text: The text to be padded.
Returns:
The padded text.
"""
image_token = cast(str, self.tokenizer.image_token)
return [text_item.replace(image_token, image_token * (self.image_pad_len + 1)) for text_item in text]
def _preprocess_inputs(
self,
text: List[str],
images: List[Image],
videos: List[List[Image]],
) -> Tuple[List[str], List[Image]]:
"""Preprocesses the input data for the VILA model.
This method takes a list of texts, images, and videos, and prepares them for the model.
It handles the interleaving of text and media, and returns the processed text and a
list of media tiles (images or video frames).
Args:
text: The input text.
images: The input images.
videos: The input videos.
Returns:
The text ready to be tokenized.
The media tiles ready to be processed.
"""
media_token_order = self._find_media_token_order(text)
image_token_placeholder = self._generate_image_token_placeholder(text)
preprocessed_text = text
preprocessed_text, preprocessed_image_tiles = self._preprocess_images(
preprocessed_text,
images,
image_token_placeholder=image_token_placeholder,
)
preprocessed_text, preprocessed_video_tiles = self._preprocess_videos(
preprocessed_text,
videos,
image_token_placeholder=image_token_placeholder,
)
# Convert back to the original image token.
image_token = cast(str, self.tokenizer.image_token)
preprocessed_text = [text_item.replace(image_token_placeholder, image_token) for text_item in preprocessed_text]
preprocessed_text = self._pad_image_tiles(preprocessed_text)
preprocessed_media_tiles = self._merge_media_tiles(
preprocessed_image_tiles,
preprocessed_video_tiles,
media_token_order,
)
return preprocessed_text, preprocessed_media_tiles
def _preprocess_images(
self,
text: List[str],
images: List[Image],
*,
image_token_placeholder: str,
) -> Tuple[List[str], List[List[Image]]]:
single_image_token_placeholder = self._generate_image_token_placeholder(text)
preprocessed_text = text
preprocessed_image_tiles: List[List[Image]] = []
for image in images:
preprocessed_text, preprocessed_single_image_tiles = self._preprocess_single_image(
text,
image,
image_token_placeholder=single_image_token_placeholder,
is_video_frame=False,
use_dynamic_preprocess=(len(images) == 1),
)
preprocessed_text = [
text_item.replace(
single_image_token_placeholder,
(image_token_placeholder + "\n") if len(images) == 1 else image_token_placeholder,
)
for text_item in preprocessed_text
]
preprocessed_image_tiles.append(preprocessed_single_image_tiles)
return preprocessed_text, preprocessed_image_tiles
def _preprocess_single_image(
self,
text: List[str],
image: Image,
*,
image_token_placeholder: str,
is_video_frame: bool,
use_dynamic_preprocess: bool,
) -> Tuple[List[str], List[Image]]:
assert isinstance(self.image_processor, (SiglipImageProcessor, SiglipImageProcessorFast))
assert self.image_processor.size["height"] == self.image_processor.size["width"]
cropped_size = self.image_processor.size["height"]
if use_dynamic_preprocess:
if is_video_frame:
max_num = self.video_max_tiles
else:
max_num = self.max_tiles
else:
max_num = 1
image = image.convert("RGB")
cropped_images: List[Image] = dynamic_preprocess(
image,
min_num=self.min_tiles,
max_num=max_num,
image_size=cropped_size,
)
image_token = cast(str, self.tokenizer.image_token)
for i in range(len(text)):
if image_token in text[i]:
text[i] = text[i].replace(image_token, image_token_placeholder * len(cropped_images))
break
return text, cropped_images
def _preprocess_videos(
self,
text: List[str],
videos: List[List[Image]],
*,
image_token_placeholder: str,
) -> Tuple[List[str], List[List[List[Image]]]]:
image_token = cast(str, self.tokenizer.image_token)
video_token = cast(str, self.tokenizer.video_token)
processed_text = text
processed_video_tiles: List[List[List[Image]]] = []
for video in videos:
# Replace the first video token with #frame image tokens.
for i in range(len(processed_text)):
if video_token in processed_text[i]:
processed_text[i] = processed_text[i].replace(video_token, image_token * len(video))
break
processed_frame_tiles: List[List[Image]] = []
for frame in video:
processed_text, processed_single_frame_tiles = self._preprocess_single_image(
processed_text,
frame,
image_token_placeholder=image_token_placeholder,
is_video_frame=True,
use_dynamic_preprocess=(self.video_max_tiles > 1),
)
processed_frame_tiles.append(processed_single_frame_tiles)
processed_video_tiles.append(processed_frame_tiles)
return processed_text, processed_video_tiles
def _replace_image_tile_suffix(self, text_inputs: BatchEncoding) -> BatchEncoding:
lf_token_id = cast(int, self.tokenizer.encode("\n")[0])
image_token_id = cast(int, self.tokenizer.image_token_id)
for i in range(len(text_inputs.input_ids)):
input_ids = text_inputs.input_ids[i]
idx = 0
while idx < len(input_ids):
if input_ids[idx] != image_token_id:
idx += 1
continue
if idx + self.image_pad_len < len(input_ids):
input_ids[idx + self.image_pad_len] = lf_token_id
idx += self.image_pad_len + 1
else:
break
return text_inputs
def dynamic_preprocess(image: Image, min_num: int, max_num: int, image_size: int, use_thumbnail=True) -> List[Image]:
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def find_closest_aspect_ratio(
aspect_ratio: float, target_ratios: List[Tuple[int, int]], width: int, height: int, image_size: int
) -> Tuple[int, int]:
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio