|
|
import uuid |
|
|
from typing import List, Optional, Tuple, cast |
|
|
|
|
|
import transformers.image_transforms as image_transforms |
|
|
import transformers.image_utils as image_utils |
|
|
import transformers.utils.logging |
|
|
import transformers.video_utils as video_utils |
|
|
from PIL.Image import Image |
|
|
from torch import Tensor |
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
|
from transformers.image_processing_utils import BaseImageProcessor |
|
|
from transformers.image_processing_utils_fast import BaseImageProcessorFast |
|
|
from transformers.image_utils import ImageInput |
|
|
from transformers.models.siglip.image_processing_siglip import SiglipImageProcessor |
|
|
from transformers.models.siglip.image_processing_siglip_fast import SiglipImageProcessorFast |
|
|
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack |
|
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
|
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TextInput |
|
|
from transformers.video_utils import VideoInput |
|
|
|
|
|
logger = transformers.utils.logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class VILAProcessorProcessingKwargs(ProcessingKwargs, total=False): |
|
|
_defaults = {} |
|
|
|
|
|
|
|
|
class VILAProcessorOutput(BatchFeature): |
|
|
input_ids: List[List[int]] | Tensor |
|
|
attention_mask: List[List[int]] | Tensor |
|
|
pixel_values: Optional[List[Tensor] | Tensor] |
|
|
|
|
|
|
|
|
class VILAProcessor(ProcessorMixin): |
|
|
attributes: List[str] = [ |
|
|
"image_processor", |
|
|
"tokenizer", |
|
|
] |
|
|
image_processor_class: str = "AutoImageProcessor" |
|
|
tokenizer_class: str = "AutoTokenizer" |
|
|
_auto_class: str = "AutoProcessor" |
|
|
valid_kwargs: List[str] = [ |
|
|
"chat_template", |
|
|
"image_pad_len", |
|
|
"max_tiles", |
|
|
"min_tiles", |
|
|
"video_max_tiles", |
|
|
] |
|
|
|
|
|
|
|
|
image_processor: BaseImageProcessor | BaseImageProcessorFast |
|
|
tokenizer: PreTrainedTokenizerBase |
|
|
|
|
|
|
|
|
image_pad_len: int |
|
|
max_tiles: int |
|
|
min_tiles: int |
|
|
video_max_tiles: int |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
image_processor: BaseImageProcessor, |
|
|
tokenizer: PreTrainedTokenizer, |
|
|
*, |
|
|
image_pad_len: int = 121, |
|
|
max_tiles: int = 12, |
|
|
min_tiles: int = 1, |
|
|
video_max_tiles: int = 1, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__( |
|
|
image_processor, |
|
|
tokenizer, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
self.image_pad_len = image_pad_len |
|
|
self.max_tiles = max_tiles |
|
|
self.min_tiles = min_tiles |
|
|
self.video_max_tiles = video_max_tiles |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
text: TextInput | List[TextInput], |
|
|
images: Optional[ImageInput] = None, |
|
|
videos: Optional[VideoInput] = None, |
|
|
**kwargs: Unpack[ProcessingKwargs], |
|
|
) -> VILAProcessorOutput: |
|
|
"""Preprocesses inputs for VILA. |
|
|
|
|
|
Args: |
|
|
text: The text to be processed. |
|
|
images: The images to be processed. |
|
|
videos: The videos to be processed. |
|
|
**kwargs: Additional arguments for processing. |
|
|
|
|
|
Returns: |
|
|
The processed inputs that can be fed to the model. |
|
|
""" |
|
|
|
|
|
merged_kwargs = self._merge_kwargs( |
|
|
VILAProcessorProcessingKwargs, |
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
normalized_text, normalized_images, normalized_videos = self._normalize_inputs( |
|
|
text=text, |
|
|
images=images, |
|
|
videos=videos, |
|
|
) |
|
|
|
|
|
preprocessed_text, preprocessed_media_tiles = self._preprocess_inputs( |
|
|
text=normalized_text, |
|
|
images=normalized_images, |
|
|
videos=normalized_videos, |
|
|
) |
|
|
|
|
|
text_inputs = self.tokenizer.__call__( |
|
|
preprocessed_text, |
|
|
**merged_kwargs["text_kwargs"], |
|
|
) |
|
|
|
|
|
if len(preprocessed_media_tiles) > 0: |
|
|
image_inputs = self.image_processor.__call__( |
|
|
preprocessed_media_tiles, |
|
|
**merged_kwargs["images_kwargs"], |
|
|
) |
|
|
else: |
|
|
image_inputs = BatchFeature() |
|
|
|
|
|
text_inputs = self._replace_image_tile_suffix(text_inputs) |
|
|
|
|
|
return VILAProcessorOutput( |
|
|
data={ |
|
|
**text_inputs, |
|
|
**image_inputs, |
|
|
} |
|
|
) |
|
|
|
|
|
def _find_media_token_order(self, text: List[str]) -> List[str]: |
|
|
"""Finds the order of media tokens in the text. |
|
|
|
|
|
Args: |
|
|
text: The text to be processed. |
|
|
|
|
|
Returns: |
|
|
The order of media tokens in the text. Each item is either an image token or a video |
|
|
token. |
|
|
""" |
|
|
|
|
|
image_token = cast(str, self.tokenizer.image_token) |
|
|
video_token = cast(str, self.tokenizer.video_token) |
|
|
|
|
|
return_order: List[str] = [] |
|
|
|
|
|
for text_item in text: |
|
|
while image_token in text_item or video_token in text_item: |
|
|
image_pos = text_item.find(image_token) |
|
|
video_pos = text_item.find(video_token) |
|
|
|
|
|
if image_pos == -1 and video_pos == -1: |
|
|
|
|
|
break |
|
|
|
|
|
elif image_pos == -1: |
|
|
|
|
|
return_order.append(video_token) |
|
|
text_item = text_item[video_pos + len(video_token) :] |
|
|
|
|
|
elif video_pos == -1: |
|
|
|
|
|
return_order.append(image_token) |
|
|
text_item = text_item[image_pos + len(image_token) :] |
|
|
|
|
|
else: |
|
|
|
|
|
if image_pos < video_pos: |
|
|
return_order.append(image_token) |
|
|
text_item = text_item[image_pos + len(image_token) :] |
|
|
else: |
|
|
return_order.append(video_token) |
|
|
text_item = text_item[video_pos + len(video_token) :] |
|
|
|
|
|
return return_order |
|
|
|
|
|
def _generate_image_token_placeholder(self, text: List[str]) -> str: |
|
|
while True: |
|
|
placeholder = f"<|image_placeholder_{str(uuid.uuid4())}|>" |
|
|
if all(placeholder not in text_item for text_item in text): |
|
|
return placeholder |
|
|
|
|
|
def _merge_media_tiles( |
|
|
self, |
|
|
image_tiles: List[List[Image]], |
|
|
video_tiles: List[List[List[Image]]], |
|
|
media_token_order: List[str], |
|
|
) -> List[Image]: |
|
|
"""Merges the media tiles by the media token order. |
|
|
|
|
|
Args: |
|
|
image_tiles: The image tiles. |
|
|
video_tiles: The video tiles. |
|
|
media_token_order: The order of media tokens in the text. |
|
|
|
|
|
Returns: |
|
|
The merged media tiles. |
|
|
""" |
|
|
|
|
|
image_token = cast(str, self.tokenizer.image_token) |
|
|
video_token = cast(str, self.tokenizer.video_token) |
|
|
|
|
|
image_tiles_idx = 0 |
|
|
video_tiles_idx = 0 |
|
|
|
|
|
return_tiles: List[Image] = [] |
|
|
|
|
|
for media_token in media_token_order: |
|
|
if media_token == image_token: |
|
|
return_tiles.extend(image_tiles[image_tiles_idx]) |
|
|
image_tiles_idx += 1 |
|
|
elif media_token == video_token: |
|
|
for video_tile in video_tiles[video_tiles_idx]: |
|
|
return_tiles.extend(video_tile) |
|
|
video_tiles_idx += 1 |
|
|
else: |
|
|
raise ValueError(f"Invalid media token: {media_token}") |
|
|
|
|
|
return return_tiles |
|
|
|
|
|
def _normalize_inputs( |
|
|
self, |
|
|
text: TextInput | List[TextInput], |
|
|
images: Optional[ImageInput], |
|
|
videos: Optional[VideoInput], |
|
|
) -> Tuple[List[str], List[Image], List[List[Image]]]: |
|
|
"""Normalizes text, image, and video inputs for processing. |
|
|
|
|
|
This method converts various input formats into standardized lists of PIL images |
|
|
and text strings that can be processed by the model. |
|
|
|
|
|
Args: |
|
|
text: The original input text. |
|
|
images: The original input images. |
|
|
videos: The original input videos. |
|
|
|
|
|
Returns: |
|
|
The text as a list of strings. |
|
|
The images as a list of PIL images. |
|
|
The videos as a list of lists of PIL images. |
|
|
""" |
|
|
|
|
|
prepared_text = text if isinstance(text, list) else [text] |
|
|
|
|
|
if images is not None: |
|
|
image_list = cast(List, image_utils.make_flat_list_of_images(images)) |
|
|
prepared_images = [cast(Image, image_transforms.to_pil_image(image)) for image in image_list] |
|
|
else: |
|
|
prepared_images = [] |
|
|
|
|
|
if videos is not None: |
|
|
video_list = cast(List[List], video_utils.make_batched_videos(videos)) |
|
|
prepared_videos = [ |
|
|
[cast(Image, image_transforms.to_pil_image(image)) for image in video] for video in video_list |
|
|
] |
|
|
else: |
|
|
prepared_videos = [] |
|
|
|
|
|
return prepared_text, prepared_images, prepared_videos |
|
|
|
|
|
def _pad_image_tiles( |
|
|
self, |
|
|
text: List[str], |
|
|
) -> List[str]: |
|
|
"""Pads each media tile. |
|
|
|
|
|
This will pad each <image> to (self.image_pad_len + 1) times. The additional one padding is |
|
|
for the \\n token suffix. |
|
|
|
|
|
Args: |
|
|
text: The text to be padded. |
|
|
|
|
|
Returns: |
|
|
The padded text. |
|
|
""" |
|
|
|
|
|
image_token = cast(str, self.tokenizer.image_token) |
|
|
|
|
|
return [text_item.replace(image_token, image_token * (self.image_pad_len + 1)) for text_item in text] |
|
|
|
|
|
def _preprocess_inputs( |
|
|
self, |
|
|
text: List[str], |
|
|
images: List[Image], |
|
|
videos: List[List[Image]], |
|
|
) -> Tuple[List[str], List[Image]]: |
|
|
"""Preprocesses the input data for the VILA model. |
|
|
|
|
|
This method takes a list of texts, images, and videos, and prepares them for the model. |
|
|
It handles the interleaving of text and media, and returns the processed text and a |
|
|
list of media tiles (images or video frames). |
|
|
|
|
|
Args: |
|
|
text: The input text. |
|
|
images: The input images. |
|
|
videos: The input videos. |
|
|
|
|
|
Returns: |
|
|
The text ready to be tokenized. |
|
|
The media tiles ready to be processed. |
|
|
""" |
|
|
|
|
|
media_token_order = self._find_media_token_order(text) |
|
|
|
|
|
image_token_placeholder = self._generate_image_token_placeholder(text) |
|
|
|
|
|
preprocessed_text = text |
|
|
preprocessed_text, preprocessed_image_tiles = self._preprocess_images( |
|
|
preprocessed_text, |
|
|
images, |
|
|
image_token_placeholder=image_token_placeholder, |
|
|
) |
|
|
preprocessed_text, preprocessed_video_tiles = self._preprocess_videos( |
|
|
preprocessed_text, |
|
|
videos, |
|
|
image_token_placeholder=image_token_placeholder, |
|
|
) |
|
|
|
|
|
|
|
|
image_token = cast(str, self.tokenizer.image_token) |
|
|
preprocessed_text = [text_item.replace(image_token_placeholder, image_token) for text_item in preprocessed_text] |
|
|
|
|
|
preprocessed_text = self._pad_image_tiles(preprocessed_text) |
|
|
|
|
|
preprocessed_media_tiles = self._merge_media_tiles( |
|
|
preprocessed_image_tiles, |
|
|
preprocessed_video_tiles, |
|
|
media_token_order, |
|
|
) |
|
|
|
|
|
return preprocessed_text, preprocessed_media_tiles |
|
|
|
|
|
def _preprocess_images( |
|
|
self, |
|
|
text: List[str], |
|
|
images: List[Image], |
|
|
*, |
|
|
image_token_placeholder: str, |
|
|
) -> Tuple[List[str], List[List[Image]]]: |
|
|
single_image_token_placeholder = self._generate_image_token_placeholder(text) |
|
|
|
|
|
preprocessed_text = text |
|
|
preprocessed_image_tiles: List[List[Image]] = [] |
|
|
|
|
|
for image in images: |
|
|
preprocessed_text, preprocessed_single_image_tiles = self._preprocess_single_image( |
|
|
text, |
|
|
image, |
|
|
image_token_placeholder=single_image_token_placeholder, |
|
|
is_video_frame=False, |
|
|
use_dynamic_preprocess=(len(images) == 1), |
|
|
) |
|
|
|
|
|
preprocessed_text = [ |
|
|
text_item.replace( |
|
|
single_image_token_placeholder, |
|
|
(image_token_placeholder + "\n") if len(images) == 1 else image_token_placeholder, |
|
|
) |
|
|
for text_item in preprocessed_text |
|
|
] |
|
|
|
|
|
preprocessed_image_tiles.append(preprocessed_single_image_tiles) |
|
|
|
|
|
return preprocessed_text, preprocessed_image_tiles |
|
|
|
|
|
def _preprocess_single_image( |
|
|
self, |
|
|
text: List[str], |
|
|
image: Image, |
|
|
*, |
|
|
image_token_placeholder: str, |
|
|
is_video_frame: bool, |
|
|
use_dynamic_preprocess: bool, |
|
|
) -> Tuple[List[str], List[Image]]: |
|
|
assert isinstance(self.image_processor, (SiglipImageProcessor, SiglipImageProcessorFast)) |
|
|
assert self.image_processor.size["height"] == self.image_processor.size["width"] |
|
|
cropped_size = self.image_processor.size["height"] |
|
|
|
|
|
if use_dynamic_preprocess: |
|
|
if is_video_frame: |
|
|
max_num = self.video_max_tiles |
|
|
else: |
|
|
max_num = self.max_tiles |
|
|
else: |
|
|
max_num = 1 |
|
|
|
|
|
image = image.convert("RGB") |
|
|
|
|
|
cropped_images: List[Image] = dynamic_preprocess( |
|
|
image, |
|
|
min_num=self.min_tiles, |
|
|
max_num=max_num, |
|
|
image_size=cropped_size, |
|
|
) |
|
|
|
|
|
image_token = cast(str, self.tokenizer.image_token) |
|
|
|
|
|
for i in range(len(text)): |
|
|
if image_token in text[i]: |
|
|
text[i] = text[i].replace(image_token, image_token_placeholder * len(cropped_images)) |
|
|
break |
|
|
|
|
|
return text, cropped_images |
|
|
|
|
|
def _preprocess_videos( |
|
|
self, |
|
|
text: List[str], |
|
|
videos: List[List[Image]], |
|
|
*, |
|
|
image_token_placeholder: str, |
|
|
) -> Tuple[List[str], List[List[List[Image]]]]: |
|
|
image_token = cast(str, self.tokenizer.image_token) |
|
|
video_token = cast(str, self.tokenizer.video_token) |
|
|
|
|
|
processed_text = text |
|
|
processed_video_tiles: List[List[List[Image]]] = [] |
|
|
|
|
|
for video in videos: |
|
|
|
|
|
for i in range(len(processed_text)): |
|
|
if video_token in processed_text[i]: |
|
|
processed_text[i] = processed_text[i].replace(video_token, image_token * len(video)) |
|
|
break |
|
|
|
|
|
processed_frame_tiles: List[List[Image]] = [] |
|
|
for frame in video: |
|
|
processed_text, processed_single_frame_tiles = self._preprocess_single_image( |
|
|
processed_text, |
|
|
frame, |
|
|
image_token_placeholder=image_token_placeholder, |
|
|
is_video_frame=True, |
|
|
use_dynamic_preprocess=(self.video_max_tiles > 1), |
|
|
) |
|
|
processed_frame_tiles.append(processed_single_frame_tiles) |
|
|
|
|
|
processed_video_tiles.append(processed_frame_tiles) |
|
|
|
|
|
return processed_text, processed_video_tiles |
|
|
|
|
|
def _replace_image_tile_suffix(self, text_inputs: BatchEncoding) -> BatchEncoding: |
|
|
lf_token_id = cast(int, self.tokenizer.encode("\n")[0]) |
|
|
image_token_id = cast(int, self.tokenizer.image_token_id) |
|
|
|
|
|
for i in range(len(text_inputs.input_ids)): |
|
|
input_ids = text_inputs.input_ids[i] |
|
|
|
|
|
idx = 0 |
|
|
while idx < len(input_ids): |
|
|
if input_ids[idx] != image_token_id: |
|
|
idx += 1 |
|
|
continue |
|
|
|
|
|
if idx + self.image_pad_len < len(input_ids): |
|
|
input_ids[idx + self.image_pad_len] = lf_token_id |
|
|
idx += self.image_pad_len + 1 |
|
|
else: |
|
|
break |
|
|
|
|
|
return text_inputs |
|
|
|
|
|
|
|
|
def dynamic_preprocess(image: Image, min_num: int, max_num: int, image_size: int, use_thumbnail=True) -> List[Image]: |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
|
|
|
target_ratios = { |
|
|
(i, j) |
|
|
for n in range(min_num, max_num + 1) |
|
|
for i in range(1, n + 1) |
|
|
for j in range(1, n + 1) |
|
|
if i * j <= max_num and i * j >= min_num |
|
|
} |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size, |
|
|
) |
|
|
|
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
|
|
|
def find_closest_aspect_ratio( |
|
|
aspect_ratio: float, target_ratios: List[Tuple[int, int]], width: int, height: int, image_size: int |
|
|
) -> Tuple[int, int]: |
|
|
best_ratio_diff = float("inf") |
|
|
best_ratio = (1, 1) |
|
|
area = width * height |
|
|
for ratio in target_ratios: |
|
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
|
if ratio_diff < best_ratio_diff: |
|
|
best_ratio_diff = ratio_diff |
|
|
best_ratio = ratio |
|
|
elif ratio_diff == best_ratio_diff: |
|
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
|
best_ratio = ratio |
|
|
return best_ratio |
|
|
|