Add link to Github repository
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,18 +1,21 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
license: mit
|
| 3 |
pipeline_tag: text-generation
|
| 4 |
tags:
|
| 5 |
- biology
|
| 6 |
- genomics
|
| 7 |
- long-context
|
| 8 |
-
library_name: transformers
|
| 9 |
---
|
|
|
|
| 10 |
# GENERator-eukaryote-3b-base model
|
| 11 |
|
| 12 |
## Abouts
|
| 13 |
In this repository, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs and 3B parameters, trained on an expansive dataset comprising 386 billion base pairs of eukaryotic DNA. The extensive and diverse pre-training data endow the GENERator with enhanced understanding and generation capabilities across various organisms.
|
| 14 |
|
| 15 |
-
For more technical details, please refer to our paper [GENERator: A Long-Context Generative Genomic Foundation Model](https://huggingface.co/
|
|
|
|
|
|
|
| 16 |
|
| 17 |
## How to use
|
| 18 |
### Simple example1: generation
|
|
@@ -72,7 +75,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 72 |
|
| 73 |
# Load the tokenizer and model.
|
| 74 |
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
|
| 75 |
-
model = AutoModelForCausalLM.from_pretrained("GENERator-eukaryote-3b-base")
|
| 76 |
|
| 77 |
config = model.config
|
| 78 |
max_length = config.max_position_embeddings
|
|
@@ -132,4 +135,4 @@ print("Sequence Embeddings:", seq_embeddings)
|
|
| 132 |
primaryClass={cs.CL},
|
| 133 |
url={https://arxiv.org/abs/2502.07272},
|
| 134 |
}
|
| 135 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
+
library_name: transformers
|
| 3 |
license: mit
|
| 4 |
pipeline_tag: text-generation
|
| 5 |
tags:
|
| 6 |
- biology
|
| 7 |
- genomics
|
| 8 |
- long-context
|
|
|
|
| 9 |
---
|
| 10 |
+
|
| 11 |
# GENERator-eukaryote-3b-base model
|
| 12 |
|
| 13 |
## Abouts
|
| 14 |
In this repository, we present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs and 3B parameters, trained on an expansive dataset comprising 386 billion base pairs of eukaryotic DNA. The extensive and diverse pre-training data endow the GENERator with enhanced understanding and generation capabilities across various organisms.
|
| 15 |
|
| 16 |
+
For more technical details, please refer to our paper [GENERator: A Long-Context Generative Genomic Foundation Model](https://huggingface.co/papers/2502.07272).
|
| 17 |
+
|
| 18 |
+
Code: https://github.com/GenerTeam/GENERator
|
| 19 |
|
| 20 |
## How to use
|
| 21 |
### Simple example1: generation
|
|
|
|
| 75 |
|
| 76 |
# Load the tokenizer and model.
|
| 77 |
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
|
| 78 |
+
model = AutoModelForCausalLM.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base")
|
| 79 |
|
| 80 |
config = model.config
|
| 81 |
max_length = config.max_position_embeddings
|
|
|
|
| 135 |
primaryClass={cs.CL},
|
| 136 |
url={https://arxiv.org/abs/2502.07272},
|
| 137 |
}
|
| 138 |
+
```
|