|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Callable |
|
|
from dataclasses import dataclass |
|
|
from typing import Any, Optional |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.generation.utils import ( |
|
|
GenerateNonBeamOutput, |
|
|
GenerationConfig, |
|
|
LogitsProcessorList, |
|
|
StoppingCriteriaList, |
|
|
) |
|
|
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm |
|
|
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import ( |
|
|
Qwen2_5_VLConfig, |
|
|
Qwen2_5_VLTextConfig, |
|
|
Qwen2_5_VLVisionConfig, |
|
|
) |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import ( |
|
|
TransformersKwargs, |
|
|
auto_docstring, |
|
|
can_return_tuple, |
|
|
is_torchdynamo_compiling, |
|
|
logging, |
|
|
) |
|
|
from transformers.utils.deprecation import deprecate_kwarg |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class Qwen2_5_VLMLP(nn.Module): |
|
|
def __init__(self, config, bias: bool = False): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, hidden_state): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
|
|
|
|
|
class Qwen2_5_VisionPatchEmbed(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
patch_size: int = 14, |
|
|
temporal_patch_size: int = 2, |
|
|
in_channels: int = 3, |
|
|
embed_dim: int = 1152, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
self.patch_size = patch_size |
|
|
self.temporal_patch_size = temporal_patch_size |
|
|
self.in_channels = in_channels |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
kernel_size = [temporal_patch_size, patch_size, patch_size] |
|
|
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
target_dtype = self.proj.weight.dtype |
|
|
hidden_states = hidden_states.view( |
|
|
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size |
|
|
) |
|
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class Qwen2_5_VisionRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
|
super().__init__() |
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
|
freqs = torch.outer(seq, self.inv_freq) |
|
|
return freqs |
|
|
|
|
|
|
|
|
class Qwen2_5_VLPatchMerger(nn.Module): |
|
|
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None: |
|
|
super().__init__() |
|
|
self.hidden_size = context_dim * (spatial_merge_size**2) |
|
|
self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6) |
|
|
self.mlp = nn.Sequential( |
|
|
nn.Linear(self.hidden_size, self.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(self.hidden_size, dim), |
|
|
) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) |
|
|
return x |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb_vision( |
|
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
orig_q_dtype = q.dtype |
|
|
orig_k_dtype = k.dtype |
|
|
q, k = q.float(), k.float() |
|
|
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float() |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
q_embed = q_embed.to(orig_q_dtype) |
|
|
k_embed = k_embed.to(orig_k_dtype) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: torch.Tensor | None, |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class Qwen2_5_VLVisionAttention(nn.Module): |
|
|
def __init__(self, config: Qwen2_5_VLVisionConfig) -> None: |
|
|
super().__init__() |
|
|
self.dim = config.hidden_size |
|
|
self.num_heads = config.num_heads |
|
|
self.head_dim = self.dim // self.num_heads |
|
|
self.num_key_value_groups = 1 |
|
|
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True) |
|
|
self.proj = nn.Linear(self.dim, self.dim) |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.config = config |
|
|
self.attention_dropout = 0.0 |
|
|
self.is_causal = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: torch.Tensor | None = None, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
seq_length = hidden_states.shape[0] |
|
|
query_states, key_states, value_states = ( |
|
|
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
|
) |
|
|
if position_embeddings is None: |
|
|
logger.warning_once( |
|
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally " |
|
|
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed " |
|
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be " |
|
|
"removed and `position_embeddings` will be mandatory." |
|
|
) |
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
else: |
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin) |
|
|
|
|
|
query_states = query_states.transpose(0, 1).unsqueeze(0) |
|
|
key_states = key_states.transpose(0, 1).unsqueeze(0) |
|
|
value_states = value_states.transpose(0, 1).unsqueeze(0) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max() |
|
|
attn_output, _ = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
cu_seq_lens_q=cu_seqlens, |
|
|
cu_seq_lens_k=cu_seqlens, |
|
|
max_length_q=max_seqlen, |
|
|
max_length_k=max_seqlen, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
) |
|
|
else: |
|
|
|
|
|
lengths = cu_seqlens[1:] - cu_seqlens[:-1] |
|
|
splits = [ |
|
|
torch.split(tensor, lengths.tolist(), dim=2) |
|
|
for tensor in (query_states, key_states, value_states) |
|
|
] |
|
|
|
|
|
attn_outputs = [ |
|
|
attention_interface( |
|
|
self, |
|
|
q, |
|
|
k, |
|
|
v, |
|
|
attention_mask=None, |
|
|
scaling=self.scaling, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
is_causal=False, |
|
|
**kwargs, |
|
|
)[0] |
|
|
for q, k, v in zip(*splits, strict=False) |
|
|
] |
|
|
attn_output = torch.cat(attn_outputs, dim=1) |
|
|
|
|
|
attn_output = attn_output.reshape(seq_length, -1).contiguous() |
|
|
attn_output = self.proj(attn_output) |
|
|
return attn_output |
|
|
|
|
|
|
|
|
class Qwen2_5_VLVisionBlock(GradientCheckpointingLayer): |
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None: |
|
|
super().__init__() |
|
|
self.norm1 = Qwen2RMSNorm(config.hidden_size, eps=1e-6) |
|
|
self.norm2 = Qwen2RMSNorm(config.hidden_size, eps=1e-6) |
|
|
self.attn = Qwen2_5_VLVisionAttention(config=config) |
|
|
self.mlp = Qwen2_5_VLMLP(config, bias=True) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
cu_seqlens: torch.Tensor, |
|
|
rotary_pos_emb: torch.Tensor | None = None, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None, |
|
|
**kwargs, |
|
|
) -> torch.Tensor: |
|
|
hidden_states = hidden_states + self.attn( |
|
|
self.norm1(hidden_states), |
|
|
cu_seqlens=cu_seqlens, |
|
|
rotary_pos_emb=rotary_pos_emb, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class Qwen2_5_VLPreTrainedModel(PreTrainedModel): |
|
|
config: Qwen2_5_VLConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"] |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
|
|
|
_can_compile_fullgraph = True |
|
|
_supports_attention_backend = True |
|
|
|
|
|
|
|
|
class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel): |
|
|
config: Qwen2_5_VLVisionConfig |
|
|
_no_split_modules = ["Qwen2_5_VLVisionBlock"] |
|
|
|
|
|
def __init__(self, config, *inputs, **kwargs) -> None: |
|
|
super().__init__(config, *inputs, **kwargs) |
|
|
self.spatial_merge_size = config.spatial_merge_size |
|
|
self.patch_size = config.patch_size |
|
|
self.fullatt_block_indexes = config.fullatt_block_indexes |
|
|
self.window_size = config.window_size |
|
|
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size |
|
|
|
|
|
self.patch_embed = Qwen2_5_VisionPatchEmbed( |
|
|
patch_size=config.patch_size, |
|
|
temporal_patch_size=config.temporal_patch_size, |
|
|
in_channels=config.in_channels, |
|
|
embed_dim=config.hidden_size, |
|
|
) |
|
|
|
|
|
head_dim = config.hidden_size // config.num_heads |
|
|
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2) |
|
|
|
|
|
self.blocks = nn.ModuleList([Qwen2_5_VLVisionBlock(config) for _ in range(config.depth)]) |
|
|
self.merger = Qwen2_5_VLPatchMerger( |
|
|
dim=config.out_hidden_size, |
|
|
context_dim=config.hidden_size, |
|
|
spatial_merge_size=config.spatial_merge_size, |
|
|
) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def rot_pos_emb(self, grid_thw): |
|
|
pos_ids = [] |
|
|
for t, h, w in grid_thw: |
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) |
|
|
hpos_ids = hpos_ids.reshape( |
|
|
h // self.spatial_merge_size, |
|
|
self.spatial_merge_size, |
|
|
w // self.spatial_merge_size, |
|
|
self.spatial_merge_size, |
|
|
) |
|
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3) |
|
|
hpos_ids = hpos_ids.flatten() |
|
|
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) |
|
|
wpos_ids = wpos_ids.reshape( |
|
|
h // self.spatial_merge_size, |
|
|
self.spatial_merge_size, |
|
|
w // self.spatial_merge_size, |
|
|
self.spatial_merge_size, |
|
|
) |
|
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3) |
|
|
wpos_ids = wpos_ids.flatten() |
|
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) |
|
|
pos_ids = torch.cat(pos_ids, dim=0) |
|
|
max_grid_size = grid_thw[:, 1:].max() |
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) |
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) |
|
|
return rotary_pos_emb |
|
|
|
|
|
def get_window_index(self, grid_thw): |
|
|
window_index: list = [] |
|
|
cu_window_seqlens: list = [0] |
|
|
window_index_id = 0 |
|
|
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size |
|
|
|
|
|
for grid_t, grid_h, grid_w in grid_thw: |
|
|
llm_grid_h, llm_grid_w = ( |
|
|
grid_h // self.spatial_merge_size, |
|
|
grid_w // self.spatial_merge_size, |
|
|
) |
|
|
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w) |
|
|
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size |
|
|
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size |
|
|
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size |
|
|
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size |
|
|
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100) |
|
|
index_padded = index_padded.reshape( |
|
|
grid_t, |
|
|
num_windows_h, |
|
|
vit_merger_window_size, |
|
|
num_windows_w, |
|
|
vit_merger_window_size, |
|
|
) |
|
|
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape( |
|
|
grid_t, |
|
|
num_windows_h * num_windows_w, |
|
|
vit_merger_window_size, |
|
|
vit_merger_window_size, |
|
|
) |
|
|
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1) |
|
|
index_padded = index_padded.reshape(-1) |
|
|
index_new = index_padded[index_padded != -100] |
|
|
window_index.append(index_new + window_index_id) |
|
|
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1] |
|
|
cu_window_seqlens.extend(cu_seqlens_tmp.tolist()) |
|
|
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item() |
|
|
window_index = torch.cat(window_index, dim=0) |
|
|
|
|
|
return window_index, cu_window_seqlens |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): |
|
|
The final hidden states of the model. |
|
|
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
|
|
|
Returns: |
|
|
`torch.Tensor`: hidden_states. |
|
|
""" |
|
|
hidden_states = self.patch_embed(hidden_states) |
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
|
window_index, cu_window_seqlens = self.get_window_index(grid_thw) |
|
|
cu_window_seqlens = torch.tensor( |
|
|
cu_window_seqlens, |
|
|
device=hidden_states.device, |
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
|
) |
|
|
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens) |
|
|
|
|
|
seq_len, _ = hidden_states.size() |
|
|
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
|
hidden_states = hidden_states[window_index, :, :] |
|
|
hidden_states = hidden_states.reshape(seq_len, -1) |
|
|
rotary_pos_emb = rotary_pos_emb.reshape( |
|
|
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1 |
|
|
) |
|
|
rotary_pos_emb = rotary_pos_emb[window_index, :, :] |
|
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) |
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( |
|
|
dim=0, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
|
) |
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
|
|
for layer_num, blk in enumerate(self.blocks): |
|
|
if layer_num in self.fullatt_block_indexes: |
|
|
cu_seqlens_now = cu_seqlens |
|
|
else: |
|
|
cu_seqlens_now = cu_window_seqlens |
|
|
|
|
|
hidden_states = blk( |
|
|
hidden_states, |
|
|
cu_seqlens=cu_seqlens_now, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = self.merger(hidden_states) |
|
|
reverse_indices = torch.argsort(window_index) |
|
|
hidden_states = hidden_states[reverse_indices, :] |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@dataclass |
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
Base class for Llava outputs, with hidden states and attentions. |
|
|
""" |
|
|
) |
|
|
class Qwen2_5_VLModelOutputWithPast(ModelOutput): |
|
|
r""" |
|
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
|
`past_key_values` input) to speed up sequential decoding. |
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
|
The rope index difference between sequence length and multimodal rope. |
|
|
""" |
|
|
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
|
past_key_values: list[torch.FloatTensor] | None = None |
|
|
hidden_states: tuple[torch.FloatTensor] | None = None |
|
|
attentions: tuple[torch.FloatTensor] | None = None |
|
|
rope_deltas: torch.LongTensor | None = None |
|
|
|
|
|
|
|
|
class Qwen2_5_VLRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, config: Qwen2_5_VLTextConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) |
|
|
position_ids_expanded = position_ids[:, :, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
class Qwen2MLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). |
|
|
|
|
|
Explanation: |
|
|
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding |
|
|
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For |
|
|
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately. |
|
|
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. |
|
|
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, |
|
|
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no |
|
|
difference with modern LLMs. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`): |
|
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
|
used to pass offsetted position ids when working with a KV-cache. |
|
|
mrope_section(`List(int)`): |
|
|
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
mrope_section = mrope_section * 2 |
|
|
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( |
|
|
unsqueeze_dim |
|
|
) |
|
|
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( |
|
|
unsqueeze_dim |
|
|
) |
|
|
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class Qwen2_5_VLAttention(nn.Module): |
|
|
""" |
|
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
|
and "Generating Long Sequences with Sparse Transformers". |
|
|
""" |
|
|
|
|
|
def __init__(self, config: Qwen2_5_VLTextConfig, layer_idx: int | None = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
if layer_idx is None: |
|
|
logger.warning_once( |
|
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
|
"when creating this class." |
|
|
) |
|
|
|
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.is_causal = True |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.rope_scaling = config.rope_scaling |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
|
raise ValueError( |
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
|
f" and `num_heads`: {self.num_heads})." |
|
|
) |
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
self.sliding_window = ( |
|
|
config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None |
|
|
) |
|
|
|
|
|
self.rotary_emb = Qwen2_5_VLRotaryEmbedding(config=config) |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: torch.Tensor | None = None, |
|
|
position_ids: torch.LongTensor | None = None, |
|
|
past_key_values: Cache | None = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: torch.LongTensor | None = None, |
|
|
position_embeddings: None |
|
|
| (tuple[torch.Tensor, torch.Tensor]) = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, torch.Tensor | None, tuple[torch.Tensor] | None]: |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_multimodal_rotary_pos_emb( |
|
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] |
|
|
) |
|
|
|
|
|
if past_key_values is not None: |
|
|
cache_kwargs = { |
|
|
"sin": sin, |
|
|
"cos": cos, |
|
|
"cache_position": cache_position, |
|
|
} |
|
|
key_states, value_states = past_key_values.update( |
|
|
key_states, value_states, self.layer_idx, cache_kwargs |
|
|
) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
position_ids=position_ids, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class Qwen2_5_VLDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: Qwen2_5_VLTextConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
if config.use_sliding_window and config._attn_implementation != "flash_attention_2": |
|
|
logger.warning_once( |
|
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
|
"unexpected results may be encountered." |
|
|
) |
|
|
self.self_attn = Qwen2_5_VLAttention(config, layer_idx) |
|
|
|
|
|
self.mlp = Qwen2MLP(config) |
|
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.attention_type = config.layer_types[layer_idx] |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: torch.Tensor | None = None, |
|
|
position_ids: torch.LongTensor | None = None, |
|
|
past_key_values: tuple[torch.Tensor] | None = None, |
|
|
output_attentions: bool | None = False, |
|
|
use_cache: bool | None = False, |
|
|
cache_position: torch.LongTensor | None = None, |
|
|
position_embeddings: None |
|
|
| (tuple[torch.Tensor, torch.Tensor]) = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.FloatTensor, tuple[torch.FloatTensor, torch.FloatTensor] | None]: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
|
returned tensors for more detail. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
|
(see `past_key_values`). |
|
|
past_key_values (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
|
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
|
with `head_dim` being the embedding dimension of each attention head. |
|
|
kwargs (`dict`, *optional*): |
|
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
|
into the model |
|
|
""" |
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel): |
|
|
config: Qwen2_5_VLTextConfig |
|
|
|
|
|
def __init__(self, config: Qwen2_5_VLTextConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[Qwen2_5_VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self._attn_implementation = config._attn_implementation |
|
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = Qwen2_5_VLRotaryEmbedding(config=config) |
|
|
self.has_sliding_layers = "sliding_attention" in self.config.layer_types |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor | None = None, |
|
|
attention_mask: torch.Tensor | None = None, |
|
|
position_ids: torch.LongTensor | None = None, |
|
|
past_key_values: Cache | None = None, |
|
|
inputs_embeds: torch.FloatTensor | None = None, |
|
|
use_cache: bool | None = None, |
|
|
output_attentions: bool | None = None, |
|
|
output_hidden_states: bool | None = None, |
|
|
return_dict: bool | None = None, |
|
|
cache_position: torch.LongTensor | None = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple | BaseModelOutputWithPast: |
|
|
output_attentions = ( |
|
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
|
|
|
if use_cache and past_key_values is None and not torch.jit.is_tracing(): |
|
|
past_key_values = DynamicCache(config=self.config) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) |
|
|
elif position_ids.ndim == 2: |
|
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if position_ids.ndim == 3 and position_ids.shape[0] == 4: |
|
|
text_position_ids = position_ids[0] |
|
|
position_ids = position_ids[1:] |
|
|
else: |
|
|
text_position_ids = position_ids[0] |
|
|
|
|
|
|
|
|
if not isinstance(causal_mask_mapping := attention_mask, dict): |
|
|
|
|
|
mask_kwargs = { |
|
|
"config": self.config, |
|
|
"input_embeds": inputs_embeds, |
|
|
"attention_mask": attention_mask, |
|
|
"cache_position": cache_position, |
|
|
"past_key_values": past_key_values, |
|
|
"position_ids": text_position_ids, |
|
|
} |
|
|
|
|
|
causal_mask_mapping = { |
|
|
"full_attention": create_causal_mask(**mask_kwargs), |
|
|
} |
|
|
|
|
|
if self.has_sliding_layers: |
|
|
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask_mapping[decoder_layer.attention_type], |
|
|
position_ids=text_position_ids, |
|
|
past_key_values=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v |
|
|
for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] |
|
|
if v is not None |
|
|
) |
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
@auto_docstring( |
|
|
custom_intro=""" |
|
|
Base class for Qwen2_5_VL causal language model (or autoregressive) outputs. |
|
|
""" |
|
|
) |
|
|
class Qwen2_5_VLCausalLMOutputWithPast(ModelOutput): |
|
|
r""" |
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
|
Language modeling loss (for next-token prediction). |
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
|
`past_key_values` input) to speed up sequential decoding. |
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
|
The rope index difference between sequence length and multimodal rope. |
|
|
""" |
|
|
|
|
|
loss: torch.FloatTensor | None = None |
|
|
logits: torch.FloatTensor | None = None |
|
|
past_key_values: list[torch.FloatTensor] | None = None |
|
|
hidden_states: tuple[torch.FloatTensor] | None = None |
|
|
attentions: tuple[torch.FloatTensor] | None = None |
|
|
rope_deltas: torch.LongTensor | None = None |
|
|
|
|
|
|
|
|
class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"] |
|
|
|
|
|
config = Qwen2_5_VLConfig |
|
|
accepts_loss_kwargs = False |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(config.vision_config) |
|
|
|
|
|
text_config = config.get_text_config() |
|
|
self.model = Qwen2_5_VLModel._from_config(text_config) |
|
|
self.vocab_size = text_config.vocab_size |
|
|
self.lm_head = nn.Linear(text_config.hidden_size, text_config.vocab_size, bias=False) |
|
|
self.rope_deltas = None |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
def get_video_features( |
|
|
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: torch.LongTensor | None = None |
|
|
): |
|
|
""" |
|
|
Encodes videos into continuous embeddings that can be forwarded to the language model. |
|
|
|
|
|
Args: |
|
|
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
|
The tensors corresponding to the input videos. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
""" |
|
|
pixel_values_videos = pixel_values_videos.type(self.visual.dtype) |
|
|
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw) |
|
|
split_sizes = (video_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist() |
|
|
video_embeds = torch.split(video_embeds, split_sizes) |
|
|
return video_embeds |
|
|
|
|
|
def get_image_features( |
|
|
self, pixel_values: torch.FloatTensor, image_grid_thw: torch.LongTensor | None = None |
|
|
): |
|
|
""" |
|
|
Encodes images into continuous embeddings that can be forwarded to the language model. |
|
|
|
|
|
Args: |
|
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): |
|
|
The tensors corresponding to the input images. |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
""" |
|
|
pixel_values = pixel_values.type(self.visual.dtype) |
|
|
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw) |
|
|
split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist() |
|
|
image_embeds = torch.split(image_embeds, split_sizes) |
|
|
return image_embeds |
|
|
|
|
|
def get_placeholder_mask( |
|
|
self, |
|
|
input_ids: torch.LongTensor, |
|
|
inputs_embeds: torch.FloatTensor, |
|
|
image_features: torch.FloatTensor = None, |
|
|
video_features: torch.FloatTensor = None, |
|
|
): |
|
|
""" |
|
|
Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is |
|
|
equal to the length of multimodal features. If the lengths are different, an error is raised. |
|
|
""" |
|
|
if input_ids is None: |
|
|
special_image_mask = inputs_embeds == self.get_input_embeddings()( |
|
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
special_image_mask = special_image_mask.all(-1) |
|
|
special_video_mask = inputs_embeds == self.get_input_embeddings()( |
|
|
torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
special_video_mask = special_video_mask.all(-1) |
|
|
else: |
|
|
special_image_mask = input_ids == self.config.image_token_id |
|
|
special_video_mask = input_ids == self.config.video_token_id |
|
|
|
|
|
n_image_tokens = special_image_mask.sum() |
|
|
special_image_mask = ( |
|
|
special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
) |
|
|
if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
|
raise ValueError( |
|
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}" |
|
|
) |
|
|
|
|
|
n_video_tokens = special_video_mask.sum() |
|
|
special_video_mask = ( |
|
|
special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
) |
|
|
if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel(): |
|
|
raise ValueError( |
|
|
f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}" |
|
|
) |
|
|
|
|
|
return special_image_mask, special_video_mask |
|
|
|
|
|
def get_rope_index( |
|
|
self, |
|
|
input_ids: torch.LongTensor | None = None, |
|
|
image_grid_thw: torch.LongTensor | None = None, |
|
|
video_grid_thw: torch.LongTensor | None = None, |
|
|
second_per_grid_ts: torch.Tensor | None = None, |
|
|
attention_mask: torch.Tensor | None = None, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Calculate the 3D rope index based on image and video's temporal, height and width in LLM. |
|
|
|
|
|
Explanation: |
|
|
Each embedding sequence contains vision embedding and text embedding or just contains text embedding. |
|
|
|
|
|
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs. |
|
|
Examples: |
|
|
input_ids: [T T T T T], here T is for text. |
|
|
temporal position_ids: [0, 1, 2, 3, 4] |
|
|
height position_ids: [0, 1, 2, 3, 4] |
|
|
width position_ids: [0, 1, 2, 3, 4] |
|
|
|
|
|
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part |
|
|
and 1D rotary position embedding for text part. |
|
|
Examples: |
|
|
Temporal (Time): 3 patches, representing different segments of the video in time. |
|
|
Height: 2 patches, dividing each frame vertically. |
|
|
Width: 2 patches, dividing each frame horizontally. |
|
|
We also have some important parameters: |
|
|
fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second. |
|
|
tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity. |
|
|
temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames. |
|
|
interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs. |
|
|
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. |
|
|
vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100] |
|
|
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] |
|
|
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] |
|
|
text temporal position_ids: [101, 102, 103, 104, 105] |
|
|
text height position_ids: [101, 102, 103, 104, 105] |
|
|
text width position_ids: [101, 102, 103, 104, 105] |
|
|
Here we calculate the text start position_ids as the max vision position_ids plus 1. |
|
|
|
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
|
it. |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*): |
|
|
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs. |
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
|
|
- 1 for tokens that are **not masked**, |
|
|
- 0 for tokens that are **masked**. |
|
|
|
|
|
Returns: |
|
|
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) |
|
|
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) |
|
|
""" |
|
|
spatial_merge_size = self.config.vision_config.spatial_merge_size |
|
|
image_token_id = self.config.image_token_id |
|
|
video_token_id = self.config.video_token_id |
|
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
mrope_position_deltas = [] |
|
|
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None): |
|
|
total_input_ids = input_ids |
|
|
if attention_mask is None: |
|
|
attention_mask = torch.ones_like(total_input_ids) |
|
|
position_ids = torch.ones( |
|
|
3, |
|
|
input_ids.shape[0], |
|
|
input_ids.shape[1], |
|
|
dtype=input_ids.dtype, |
|
|
device=input_ids.device, |
|
|
) |
|
|
image_index, video_index = 0, 0 |
|
|
attention_mask = attention_mask.to(total_input_ids.device) |
|
|
for i, input_ids in enumerate(total_input_ids): |
|
|
input_ids = input_ids[attention_mask[i] == 1] |
|
|
image_nums, video_nums = 0, 0 |
|
|
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) |
|
|
vision_tokens = input_ids[vision_start_indices + 1] |
|
|
image_nums = (vision_tokens == image_token_id).sum() |
|
|
video_nums = (vision_tokens == video_token_id).sum() |
|
|
input_tokens = input_ids.tolist() |
|
|
llm_pos_ids_list: list = [] |
|
|
st = 0 |
|
|
remain_images, remain_videos = image_nums, video_nums |
|
|
for _ in range(image_nums + video_nums): |
|
|
if image_token_id in input_tokens and remain_images > 0: |
|
|
ed_image = input_tokens.index(image_token_id, st) |
|
|
else: |
|
|
ed_image = len(input_tokens) + 1 |
|
|
if video_token_id in input_tokens and remain_videos > 0: |
|
|
ed_video = input_tokens.index(video_token_id, st) |
|
|
else: |
|
|
ed_video = len(input_tokens) + 1 |
|
|
if ed_image < ed_video: |
|
|
t, h, w = ( |
|
|
image_grid_thw[image_index][0], |
|
|
image_grid_thw[image_index][1], |
|
|
image_grid_thw[image_index][2], |
|
|
) |
|
|
second_per_grid_t = 0 |
|
|
image_index += 1 |
|
|
remain_images -= 1 |
|
|
ed = ed_image |
|
|
|
|
|
else: |
|
|
t, h, w = ( |
|
|
video_grid_thw[video_index][0], |
|
|
video_grid_thw[video_index][1], |
|
|
video_grid_thw[video_index][2], |
|
|
) |
|
|
if second_per_grid_ts is not None: |
|
|
second_per_grid_t = second_per_grid_ts[video_index] |
|
|
else: |
|
|
second_per_grid_t = 1.0 |
|
|
video_index += 1 |
|
|
remain_videos -= 1 |
|
|
ed = ed_video |
|
|
llm_grid_t, llm_grid_h, llm_grid_w = ( |
|
|
t.item(), |
|
|
h.item() // spatial_merge_size, |
|
|
w.item() // spatial_merge_size, |
|
|
) |
|
|
text_len = ed - st |
|
|
|
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
|
|
range_tensor = torch.arange(llm_grid_t).view(-1, 1) |
|
|
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w) |
|
|
|
|
|
|
|
|
second_per_grid_t = torch.as_tensor( |
|
|
second_per_grid_t, dtype=range_tensor.dtype, device=range_tensor.device |
|
|
) |
|
|
|
|
|
time_tensor = ( |
|
|
expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second |
|
|
) |
|
|
|
|
|
time_tensor_long = time_tensor.long() |
|
|
t_index = time_tensor_long.flatten() |
|
|
|
|
|
h_index = ( |
|
|
torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() |
|
|
) |
|
|
w_index = ( |
|
|
torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() |
|
|
) |
|
|
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) |
|
|
st = ed + llm_grid_t * llm_grid_h * llm_grid_w |
|
|
|
|
|
if st < len(input_tokens): |
|
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
|
text_len = len(input_tokens) - st |
|
|
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) |
|
|
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) |
|
|
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) |
|
|
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) |
|
|
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) |
|
|
return position_ids, mrope_position_deltas |
|
|
else: |
|
|
if attention_mask is not None: |
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device) |
|
|
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] |
|
|
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] |
|
|
else: |
|
|
position_ids = ( |
|
|
torch.arange(input_ids.shape[1], device=input_ids.device) |
|
|
.view(1, 1, -1) |
|
|
.expand(3, input_ids.shape[0], -1) |
|
|
) |
|
|
mrope_position_deltas = torch.zeros( |
|
|
[input_ids.shape[0], 1], |
|
|
device=input_ids.device, |
|
|
dtype=input_ids.dtype, |
|
|
) |
|
|
|
|
|
return position_ids, mrope_position_deltas |
|
|
|
|
|
@can_return_tuple |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: torch.Tensor | None = None, |
|
|
position_ids: torch.LongTensor | None = None, |
|
|
past_key_values: Cache | None = None, |
|
|
inputs_embeds: torch.FloatTensor | None = None, |
|
|
labels: torch.LongTensor | None = None, |
|
|
use_cache: bool | None = None, |
|
|
output_attentions: bool | None = None, |
|
|
output_hidden_states: bool | None = None, |
|
|
pixel_values: torch.Tensor | None = None, |
|
|
pixel_values_videos: torch.FloatTensor | None = None, |
|
|
image_grid_thw: torch.LongTensor | None = None, |
|
|
video_grid_thw: torch.LongTensor | None = None, |
|
|
rope_deltas: torch.LongTensor | None = None, |
|
|
cache_position: torch.LongTensor | None = None, |
|
|
second_per_grid_ts: torch.Tensor | None = None, |
|
|
logits_to_keep: int | torch.Tensor = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> tuple | Qwen2_5_VLCausalLMOutputWithPast: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each image in LLM. |
|
|
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): |
|
|
The temporal, height and width of feature shape of each video in LLM. |
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): |
|
|
The rope index difference between sequence length and multimodal rope. |
|
|
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*): |
|
|
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs. |
|
|
```""" |
|
|
output_attentions = ( |
|
|
output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
|
|
if pixel_values is not None: |
|
|
image_embeds = self.get_image_features(pixel_values, image_grid_thw) |
|
|
image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
image_mask, _ = self.get_placeholder_mask( |
|
|
input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds |
|
|
) |
|
|
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds) |
|
|
|
|
|
if pixel_values_videos is not None: |
|
|
video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw) |
|
|
video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype) |
|
|
_, video_mask = self.get_placeholder_mask( |
|
|
input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds |
|
|
) |
|
|
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds) |
|
|
|
|
|
if position_ids is None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prefill_compiled_stage = is_torchdynamo_compiling() and ( |
|
|
(input_ids is not None and input_ids.shape[1] != 1) |
|
|
or (inputs_embeds is not None and inputs_embeds.shape[1] != 1) |
|
|
) |
|
|
prefill_noncompiled_stage = not is_torchdynamo_compiling() and ( |
|
|
(cache_position is not None and cache_position[0] == 0) |
|
|
or (past_key_values is None or past_key_values.get_seq_length() == 0) |
|
|
) |
|
|
if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None: |
|
|
position_ids, rope_deltas = self.get_rope_index( |
|
|
input_ids, |
|
|
image_grid_thw, |
|
|
video_grid_thw, |
|
|
second_per_grid_ts=second_per_grid_ts, |
|
|
attention_mask=attention_mask, |
|
|
) |
|
|
self.rope_deltas = rope_deltas |
|
|
else: |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
position_ids = torch.arange(seq_length, device=inputs_embeds.device) |
|
|
position_ids = position_ids.view(1, 1, -1).expand(3, batch_size, -1) |
|
|
if cache_position is not None: |
|
|
delta = (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) |
|
|
else: |
|
|
delta = torch.zeros((batch_size, seq_length), device=inputs_embeds.device) |
|
|
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=1) |
|
|
position_ids += delta.to(position_ids.device) |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=None, |
|
|
position_ids=position_ids, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
|
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function( |
|
|
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs |
|
|
) |
|
|
|
|
|
return Qwen2_5_VLCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
rope_deltas=self.rope_deltas, |
|
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
cache_position=None, |
|
|
position_ids=None, |
|
|
use_cache=True, |
|
|
pixel_values=None, |
|
|
pixel_values_videos=None, |
|
|
image_grid_thw=None, |
|
|
video_grid_thw=None, |
|
|
second_per_grid_ts=None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
|
input_ids, |
|
|
past_key_values=past_key_values, |
|
|
attention_mask=attention_mask, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
position_ids=position_ids, |
|
|
pixel_values=pixel_values, |
|
|
pixel_values_videos=pixel_values_videos, |
|
|
image_grid_thw=image_grid_thw, |
|
|
video_grid_thw=video_grid_thw, |
|
|
second_per_grid_ts=second_per_grid_ts, |
|
|
use_cache=use_cache, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
if position_ids is None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cache_position[0] == 0 or self.rope_deltas is None: |
|
|
vision_positions, rope_deltas = self.get_rope_index( |
|
|
model_inputs.get("input_ids", None), |
|
|
image_grid_thw=image_grid_thw, |
|
|
video_grid_thw=video_grid_thw, |
|
|
second_per_grid_ts=second_per_grid_ts, |
|
|
attention_mask=attention_mask, |
|
|
) |
|
|
self.rope_deltas = rope_deltas |
|
|
|
|
|
elif "position_ids" in model_inputs: |
|
|
position_ids = model_inputs["position_ids"][None, ...] |
|
|
delta = self.rope_deltas |
|
|
delta = delta.repeat_interleave(position_ids.shape[1] // delta.shape[0], dim=0) |
|
|
vision_positions = position_ids + delta.expand_as(position_ids) |
|
|
vision_positions = vision_positions.expand(3, vision_positions.shape[1], -1) |
|
|
|
|
|
|
|
|
if "position_ids" not in model_inputs: |
|
|
text_positions = torch.arange(input_ids, device=input_ids.device)[None, None, :] |
|
|
else: |
|
|
text_positions = model_inputs["position_ids"][None, ...] |
|
|
model_inputs["position_ids"] = torch.cat([text_positions, vision_positions], dim=0) |
|
|
|
|
|
if cache_position[0] != 0: |
|
|
model_inputs["pixel_values"] = None |
|
|
model_inputs["pixel_values_videos"] = None |
|
|
|
|
|
return model_inputs |
|
|
|
|
|
def _get_image_nums_and_video_nums( |
|
|
self, |
|
|
input_ids: torch.LongTensor | None, |
|
|
inputs_embeds: torch.Tensor | None = None, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Get the number of images and videos for each sample to calculate the separation length of the sample tensor. |
|
|
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications. |
|
|
|
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
|
|
Returns: |
|
|
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`) |
|
|
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`) |
|
|
""" |
|
|
image_token_id = self.config.image_token_id |
|
|
video_token_id = self.config.video_token_id |
|
|
vision_start_token_id = self.config.vision_start_token_id |
|
|
|
|
|
if inputs_embeds is not None: |
|
|
vision_start_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
image_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
video_mask = ( |
|
|
inputs_embeds |
|
|
== self.get_input_embeddings()( |
|
|
torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
|
) |
|
|
)[..., 0] |
|
|
else: |
|
|
vision_start_mask = input_ids == vision_start_token_id |
|
|
image_mask = input_ids == image_token_id |
|
|
video_mask = input_ids == video_token_id |
|
|
|
|
|
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1) |
|
|
image_nums = torch.sum(vision_first_mask & image_mask, dim=1) |
|
|
video_nums = torch.sum(vision_first_mask & video_mask, dim=1) |
|
|
|
|
|
return image_nums, video_nums |
|
|
|
|
|
def _expand_inputs_for_generation( |
|
|
self, |
|
|
expand_size: int = 1, |
|
|
is_encoder_decoder: bool = False, |
|
|
input_ids: torch.LongTensor | None = None, |
|
|
**model_kwargs, |
|
|
) -> tuple[torch.LongTensor, dict[str, Any]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if expand_size == 1: |
|
|
return input_ids, model_kwargs |
|
|
|
|
|
visual_keys = [ |
|
|
"pixel_values", |
|
|
"image_grid_thw", |
|
|
"pixel_values_videos", |
|
|
"video_grid_thw", |
|
|
"second_per_grid_ts", |
|
|
] |
|
|
|
|
|
def _expand_dict_for_generation_visual(dict_to_expand): |
|
|
image_grid_thw = model_kwargs.get("image_grid_thw", None) |
|
|
video_grid_thw = model_kwargs.get("video_grid_thw", None) |
|
|
image_nums, video_nums = self._get_image_nums_and_video_nums( |
|
|
input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None) |
|
|
) |
|
|
|
|
|
def _repeat_interleave_samples(x, lengths, repeat_times): |
|
|
samples = torch.split(x, lengths) |
|
|
repeat_args = [repeat_times] + [1] * (x.dim() - 1) |
|
|
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0) |
|
|
return result |
|
|
|
|
|
for key in dict_to_expand: |
|
|
if key == "pixel_values": |
|
|
|
|
|
samples = torch.split(image_grid_thw, list(image_nums)) |
|
|
|
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "image_grid_thw": |
|
|
|
|
|
lengths = list(image_nums) |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "pixel_values_videos": |
|
|
samples = torch.split(video_grid_thw, list(video_nums)) |
|
|
lengths = [torch.prod(sample, dim=1).sum() for sample in samples] |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "video_grid_thw": |
|
|
lengths = list(video_nums) |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=lengths, repeat_times=expand_size |
|
|
) |
|
|
elif key == "second_per_grid_ts": |
|
|
dict_to_expand[key] = _repeat_interleave_samples( |
|
|
dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size |
|
|
) |
|
|
return dict_to_expand |
|
|
|
|
|
def _expand_dict_for_generation(dict_to_expand): |
|
|
for key in dict_to_expand: |
|
|
if ( |
|
|
key != "cache_position" |
|
|
and dict_to_expand[key] is not None |
|
|
and isinstance(dict_to_expand[key], torch.Tensor) |
|
|
and key not in visual_keys |
|
|
): |
|
|
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) |
|
|
return dict_to_expand |
|
|
|
|
|
model_kwargs = _expand_dict_for_generation_visual(model_kwargs) |
|
|
|
|
|
if input_ids is not None: |
|
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
|
|
|
|
model_kwargs = _expand_dict_for_generation(model_kwargs) |
|
|
|
|
|
if is_encoder_decoder: |
|
|
if model_kwargs.get("encoder_outputs") is None: |
|
|
raise ValueError( |
|
|
"If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined." |
|
|
) |
|
|
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) |
|
|
|
|
|
return input_ids, model_kwargs |
|
|
|
|
|
def _sample( |
|
|
self, |
|
|
input_ids: torch.LongTensor, |
|
|
logits_processor: LogitsProcessorList, |
|
|
stopping_criteria: StoppingCriteriaList, |
|
|
generation_config: GenerationConfig, |
|
|
synced_gpus: bool, |
|
|
streamer: Optional["BaseStreamer"], |
|
|
**model_kwargs, |
|
|
) -> GenerateNonBeamOutput | torch.LongTensor: |
|
|
pad_token_id = generation_config._pad_token_tensor |
|
|
output_attentions = generation_config.output_attentions |
|
|
output_hidden_states = generation_config.output_hidden_states |
|
|
output_scores = generation_config.output_scores |
|
|
output_logits = generation_config.output_logits |
|
|
return_dict_in_generate = generation_config.return_dict_in_generate |
|
|
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) |
|
|
do_sample = generation_config.do_sample |
|
|
|
|
|
|
|
|
scores = () if (return_dict_in_generate and output_scores) else None |
|
|
raw_logits = () if (return_dict_in_generate and output_logits) else None |
|
|
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None |
|
|
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None |
|
|
|
|
|
|
|
|
batch_size, cur_len = input_ids.shape[:2] |
|
|
this_peer_finished = False |
|
|
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) |
|
|
model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs) |
|
|
|
|
|
model_forward = self.__call__ |
|
|
compile_forward = self._valid_auto_compile_criteria(model_kwargs, generation_config) |
|
|
if compile_forward: |
|
|
import os |
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "0" |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
|
|
|
if ( |
|
|
generation_config.compile_config is not None |
|
|
and generation_config.compile_config.fullgraph |
|
|
): |
|
|
logger.warning_once( |
|
|
"When using Flash Attention 2 and a static cache, you cannot use the option `CompileConfig(fullgraph=True)` as " |
|
|
"FA2 introduces graph breaks. We overrode the option with `fullgraph=False`." |
|
|
) |
|
|
generation_config.compile_config.fullgraph = False |
|
|
model_forward = self.get_compiled_call(generation_config.compile_config) |
|
|
|
|
|
if generation_config.prefill_chunk_size is not None: |
|
|
model_kwargs = self._prefill_chunking(input_ids, generation_config, **model_kwargs) |
|
|
is_prefill = False |
|
|
else: |
|
|
is_prefill = True |
|
|
|
|
|
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): |
|
|
|
|
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
|
|
|
|
|
|
|
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) |
|
|
model_inputs.update( |
|
|
{"output_hidden_states": output_hidden_states} if output_hidden_states else {} |
|
|
) |
|
|
|
|
|
if is_prefill: |
|
|
outputs = self(**model_inputs, return_dict=True) |
|
|
is_prefill = False |
|
|
else: |
|
|
outputs = model_forward(**model_inputs, return_dict=True) |
|
|
|
|
|
|
|
|
model_kwargs = self._update_model_kwargs_for_generation( |
|
|
outputs, |
|
|
model_kwargs, |
|
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
|
) |
|
|
if synced_gpus and this_peer_finished: |
|
|
continue |
|
|
|
|
|
|
|
|
|
|
|
next_token_logits = outputs.logits[:, -1, :].to( |
|
|
copy=True, dtype=torch.float32, device=input_ids.device |
|
|
) |
|
|
|
|
|
|
|
|
next_token_scores = logits_processor(input_ids, next_token_logits) |
|
|
|
|
|
|
|
|
if return_dict_in_generate: |
|
|
if output_scores: |
|
|
scores += (next_token_scores,) |
|
|
if output_logits: |
|
|
raw_logits += (next_token_logits,) |
|
|
if output_attentions: |
|
|
decoder_attentions += (outputs.attentions,) |
|
|
if output_hidden_states: |
|
|
decoder_hidden_states += (outputs.hidden_states,) |
|
|
actions = outputs.get("actions", None) |
|
|
|
|
|
|
|
|
if do_sample: |
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1) |
|
|
|
|
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) |
|
|
else: |
|
|
next_tokens = torch.argmax(next_token_scores, dim=-1) |
|
|
|
|
|
|
|
|
if has_eos_stopping_criteria: |
|
|
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) |
|
|
|
|
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) |
|
|
if streamer is not None: |
|
|
streamer.put(next_tokens.cpu()) |
|
|
|
|
|
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) |
|
|
this_peer_finished = unfinished_sequences.max() == 0 |
|
|
cur_len += 1 |
|
|
|
|
|
del outputs |
|
|
|
|
|
if streamer is not None: |
|
|
streamer.end() |
|
|
|
|
|
if return_dict_in_generate: |
|
|
return GenerateDecoderOnlyOutput( |
|
|
sequences=input_ids, |
|
|
scores=scores, |
|
|
logits=raw_logits, |
|
|
attentions=decoder_attentions, |
|
|
hidden_states=decoder_hidden_states, |
|
|
past_key_values=model_kwargs.get("past_key_values"), |
|
|
actions=actions, |
|
|
) |
|
|
else: |
|
|
return input_ids |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
|
class GenerateDecoderOnlyOutput(ModelOutput): |
|
|
sequences: torch.LongTensor |
|
|
scores: tuple[torch.FloatTensor] | None = None |
|
|
logits: tuple[torch.FloatTensor] | None = None |
|
|
attentions: tuple[tuple[torch.FloatTensor]] | None = None |
|
|
hidden_states: tuple[tuple[torch.FloatTensor]] | None = None |
|
|
past_key_values: tuple[tuple[tuple[torch.FloatTensor]]] | None = None |
|
|
actions: torch.FloatTensor | None = None |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"Qwen2_5_VLForConditionalGeneration", |
|
|
"Qwen2_5_VLModel", |
|
|
"Qwen2_5_VLPreTrainedModel", |
|
|
"Qwen2_5_VLTextModel", |
|
|
] |
|
|
|