ntv3_base_model / README.md
ztang-id's picture
Initial upload - unified base model with pre-trained and post-trained code
7ccbcb2 verified
---
library_name: transformers
pipeline_tag: fill-mask
tags:
- genomics
- dna
- masked-lm
- ntv3
- long-range
- base-model
license: other
language:
- code
model_parameter_count: 7692475
---
# InstaDeepAI/ntv3_base_model
**Unified base model repository for NTv3 models.**
This repository contains shared modeling code used by both:
- **Pre-trained models** (masked language models)
- **Post-trained models** (conditioned multi-species models with functional genomics heads)
**Note:** This repo should not be used standalone. It provides modeling code that is referenced by individual model checkpoints via `trust_remote_code=True`.
## Contents
| File | Purpose |
|------|---------|
| `configuration_ntv3_pretrained.py` | Config class: `Ntv3PreTrainedConfig` |
| `configuration_ntv3_posttrained.py` | Config classes: `DiscreteConditionedNTv3Config`, `NTv3PostTrainedConfig` |
| `modeling_ntv3_pretrained.py` | Pre-trained model: `NTv3PreTrained` |
| `modeling_ntv3_posttrained.py` | Post-trained model: `NTv3PostTrained` with conditioned towers and heads |
| `tokenization_ntv3.py` | Tokenizer: `NTv3Tokenizer` (DNA) |
## Architecture
- U-Net style conv tower β†’ Transformer stack β†’ deconv tower β†’ LM head
- Post-trained models add adaptive layer norms and multi-species prediction heads
- Tokenizer: character-level over A T C G N + specials (`<unk>` `<pad>` `<mask>` `<cls>` `<eos>` `<bos>`)