-- license: apache-2.0 library_name: jaxnn tags: - image-classification
NOTE
jaxnn is still developing (pip installation is not available), it will be available soon when enough models are ported into FLAX/JAX
Model card for resnet34.a1_in1k
A ResNet-B image classification model.
This model features:
- ReLU activations
- single layer 7x7 convolution with pooling
- 1x1 convolution shortcut downsample
Trained on ImageNet-1k in jaxnn using recipe template described below.
Recipe details:
- ResNet Strikes Back
A1recipe - LAMB optimizer with BCE loss
- Cosine LR schedule with warmup
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 21.8
- GMACs: 3.7
- Activations (M): 3.7
- Image size: train = 224 x 224, test = 288 x 288
- Papers:
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
- Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385
- Original: https://github.com/huggingface/pytorch-image-models
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import jaxnn
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = jaxnn.create_model('resnet34.a1_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = jaxnn.data.resolve_model_data_config(model)
transforms = jaxnn.data.create_transform(**data_config, is_training=False)
output = model(jax.expand_dims(transforms(img), 0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import jaxnn
import jax
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = jaxnn.create_model(
'resnet34.a1_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = jaxnn.data.resolve_model_data_config(model)
transforms = jaxnn.data.create_transform(**data_config, is_training=False)
output = model(jax.expand_dims(transforms(img), 0)) # jax.expand_dims single image into batch of 1
for o in output:
# print shape of each feature map in output in format [Batch, Height, Width, Channels]
# e.g.:
# (1, 112, 112, 64)
# (1, 56, 56, 64)
# (1, 28, 28, 128)
# (1, 14, 14, 256)
# (1, 7, 7, 512)
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import jaxnn
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = jaxnn.create_model(
'resnet34.a1_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = jaxnn.data.resolve_model_data_config(model)
transforms = jaxnn.data.create_transform(**data_config, is_training=False)
output = model(jax.expand_dims(transforms(img), 0)) # output is (batch_size, num_features) shaped Array
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(jax.expand_dims(transforms(img), 0))
# output is unpooled, a (1, 7, 7, 512) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped Array
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support