SentenceTransformer based on google-bert/bert-base-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-cased on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("Jimmy-Ooi/Tyrisonase_test_model_800_8epoch_wd_1.00")
# Run inference
sentences = [
'O=C(NC(Cc1ccccc1)C(=O)NO)OCc1cc(=O)c(O)co1',
'Cc1ccc(C(C)C)c(OC(=O)/C=C/c2ccc(O)cc2)c1',
'COCCOc1ccc(C=C2C(=O)NC(=S)NC2=O)cc1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.6172, -0.5274],
# [ 0.6172, 1.0000, 0.2429],
# [-0.5274, 0.2429, 1.0000]])
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 120,059 training samples
- Columns:
premise,hypothesis, andlabel - Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 11 tokens
- mean: 38.92 tokens
- max: 106 tokens
- min: 11 tokens
- mean: 40.28 tokens
- max: 106 tokens
- 0: ~48.30%
- 2: ~51.70%
- Samples:
premise hypothesis label Cc1cc(OCc2cn(Cc3ccc(F)cc3)nn2)c(C=C2C(=O)NC(=S)NC2=O)cc1BrNn1c(SCc2cc(=O)c(O)co2)nnc1-c1ccc(Cl)cc12Cl.NC(Cc1ccc(=O)n(O)c1)C(=O)OOc1cc(O)cc(CC(c2ccc(O)cc2O)c2c(O)cc(/C=C/c3ccc(O)cc3O)cc2O)c12Nc1ccc(C(=O)N2CCN(Cc3ccc(F)cc3)CC2)cc1NC(=O)C@HNC(=O)OCc1cc(=O)c(O)co12 - Loss:
SoftmaxLoss
Evaluation Dataset
csv
- Dataset: csv
- Size: 21,187 evaluation samples
- Columns:
premise,hypothesis, andlabel - Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 11 tokens
- mean: 39.53 tokens
- max: 106 tokens
- min: 11 tokens
- mean: 39.69 tokens
- max: 106 tokens
- 0: ~51.60%
- 2: ~48.40%
- Samples:
premise hypothesis label COc1ccc(/C=C/C(=O)NCCc2c[nH]c3ccc(O)cc23)cc1OO=C(NCc1ccc(O)cc1O)c1cc(O)c(O)c(O)c10COc1ccc(/C=C/C(=O)NCCc2c[nH]c3ccc(O)cc23)cc1OCC(C)CC@HC(=O)OCc1cc(=O)c(O)c[nH]12COc1c(O)cc2c(c1O)[C@@H]1OC@HC@@HC@H[C@H]1OC2=OCOc1cc(OC)c(C2CCN(C)C2CO)c(O)c1-c1cc(-c2ccc(N+[O-])cc2Cl)[nH]n10 - Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64per_device_eval_batch_size: 64weight_decay: 1.0num_train_epochs: 8warmup_steps: 100fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 1.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 8max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 100log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0533 | 100 | 0.7573 |
| 0.1066 | 200 | 0.6717 |
| 0.1599 | 300 | 0.6325 |
| 0.2132 | 400 | 0.6192 |
| 0.2665 | 500 | 0.6102 |
| 0.3198 | 600 | 0.5817 |
| 0.3731 | 700 | 0.5813 |
| 0.4264 | 800 | 0.5718 |
| 0.4797 | 900 | 0.5619 |
| 0.5330 | 1000 | 0.5711 |
| 0.5864 | 1100 | 0.5602 |
| 0.6397 | 1200 | 0.5601 |
| 0.6930 | 1300 | 0.5498 |
| 0.7463 | 1400 | 0.5549 |
| 0.7996 | 1500 | 0.5677 |
| 0.8529 | 1600 | 0.5444 |
| 0.9062 | 1700 | 0.5491 |
| 0.9595 | 1800 | 0.5353 |
| 1.0128 | 1900 | 0.5528 |
| 1.0661 | 2000 | 0.5414 |
| 1.1194 | 2100 | 0.5451 |
| 1.1727 | 2200 | 0.5392 |
| 1.2260 | 2300 | 0.5343 |
| 1.2793 | 2400 | 0.5384 |
| 1.3326 | 2500 | 0.5289 |
| 1.3859 | 2600 | 0.5273 |
| 1.4392 | 2700 | 0.5279 |
| 1.4925 | 2800 | 0.5278 |
| 1.5458 | 2900 | 0.536 |
| 1.5991 | 3000 | 0.5286 |
| 1.6525 | 3100 | 0.5301 |
| 1.7058 | 3200 | 0.5302 |
| 1.7591 | 3300 | 0.5298 |
| 1.8124 | 3400 | 0.5231 |
| 1.8657 | 3500 | 0.5258 |
| 1.9190 | 3600 | 0.5212 |
| 1.9723 | 3700 | 0.5363 |
| 2.0256 | 3800 | 0.5207 |
| 2.0789 | 3900 | 0.5112 |
| 2.1322 | 4000 | 0.5237 |
| 2.1855 | 4100 | 0.5218 |
| 2.2388 | 4200 | 0.5182 |
| 2.2921 | 4300 | 0.5187 |
| 2.3454 | 4400 | 0.5213 |
| 2.3987 | 4500 | 0.5122 |
| 2.4520 | 4600 | 0.5128 |
| 2.5053 | 4700 | 0.5115 |
| 2.5586 | 4800 | 0.5271 |
| 2.6119 | 4900 | 0.5152 |
| 2.6652 | 5000 | 0.5131 |
| 2.7186 | 5100 | 0.5097 |
| 2.7719 | 5200 | 0.517 |
| 2.8252 | 5300 | 0.5157 |
| 2.8785 | 5400 | 0.5121 |
| 2.9318 | 5500 | 0.525 |
| 2.9851 | 5600 | 0.511 |
| 3.0384 | 5700 | 0.516 |
| 3.0917 | 5800 | 0.5191 |
| 3.1450 | 5900 | 0.5078 |
| 3.1983 | 6000 | 0.5108 |
| 3.2516 | 6100 | 0.5121 |
| 3.3049 | 6200 | 0.5031 |
| 3.3582 | 6300 | 0.5149 |
| 3.4115 | 6400 | 0.5041 |
| 3.4648 | 6500 | 0.5129 |
| 3.5181 | 6600 | 0.5057 |
| 3.5714 | 6700 | 0.508 |
| 3.6247 | 6800 | 0.5085 |
| 3.6780 | 6900 | 0.5133 |
| 3.7313 | 7000 | 0.509 |
| 3.7846 | 7100 | 0.5093 |
| 3.8380 | 7200 | 0.503 |
| 3.8913 | 7300 | 0.5017 |
| 3.9446 | 7400 | 0.5119 |
| 3.9979 | 7500 | 0.5073 |
| 4.0512 | 7600 | 0.5107 |
| 4.1045 | 7700 | 0.5104 |
| 4.1578 | 7800 | 0.5067 |
| 4.2111 | 7900 | 0.5164 |
| 4.2644 | 8000 | 0.4986 |
| 4.3177 | 8100 | 0.5128 |
| 4.3710 | 8200 | 0.506 |
| 4.4243 | 8300 | 0.5094 |
| 4.4776 | 8400 | 0.5018 |
| 4.5309 | 8500 | 0.5026 |
| 4.5842 | 8600 | 0.5069 |
| 4.6375 | 8700 | 0.5033 |
| 4.6908 | 8800 | 0.5054 |
| 4.7441 | 8900 | 0.4993 |
| 4.7974 | 9000 | 0.501 |
| 4.8507 | 9100 | 0.4963 |
| 4.9041 | 9200 | 0.4999 |
| 4.9574 | 9300 | 0.5126 |
| 5.0107 | 9400 | 0.498 |
| 5.0640 | 9500 | 0.5026 |
| 5.1173 | 9600 | 0.5131 |
| 5.1706 | 9700 | 0.5013 |
| 5.2239 | 9800 | 0.4994 |
| 5.2772 | 9900 | 0.4954 |
| 5.3305 | 10000 | 0.4972 |
| 5.3838 | 10100 | 0.5021 |
| 5.4371 | 10200 | 0.5024 |
| 5.4904 | 10300 | 0.5019 |
| 5.5437 | 10400 | 0.5021 |
| 5.5970 | 10500 | 0.5022 |
| 5.6503 | 10600 | 0.5009 |
| 5.7036 | 10700 | 0.5034 |
| 5.7569 | 10800 | 0.4943 |
| 5.8102 | 10900 | 0.5131 |
| 5.8635 | 11000 | 0.4962 |
| 5.9168 | 11100 | 0.4991 |
| 5.9701 | 11200 | 0.4976 |
| 6.0235 | 11300 | 0.5086 |
| 6.0768 | 11400 | 0.5012 |
| 6.1301 | 11500 | 0.5033 |
| 6.1834 | 11600 | 0.5006 |
| 6.2367 | 11700 | 0.5029 |
| 6.2900 | 11800 | 0.4883 |
| 6.3433 | 11900 | 0.5016 |
| 6.3966 | 12000 | 0.4932 |
| 6.4499 | 12100 | 0.4971 |
| 6.5032 | 12200 | 0.5025 |
| 6.5565 | 12300 | 0.5023 |
| 6.6098 | 12400 | 0.4985 |
| 6.6631 | 12500 | 0.4998 |
| 6.7164 | 12600 | 0.4997 |
| 6.7697 | 12700 | 0.498 |
| 6.8230 | 12800 | 0.5077 |
| 6.8763 | 12900 | 0.4966 |
| 6.9296 | 13000 | 0.4992 |
| 6.9829 | 13100 | 0.4906 |
| 7.0362 | 13200 | 0.5024 |
| 7.0896 | 13300 | 0.4981 |
| 7.1429 | 13400 | 0.4913 |
| 7.1962 | 13500 | 0.5022 |
| 7.2495 | 13600 | 0.4935 |
| 7.3028 | 13700 | 0.4994 |
| 7.3561 | 13800 | 0.4915 |
| 7.4094 | 13900 | 0.4973 |
| 7.4627 | 14000 | 0.4985 |
| 7.5160 | 14100 | 0.4958 |
| 7.5693 | 14200 | 0.5001 |
| 7.6226 | 14300 | 0.4955 |
| 7.6759 | 14400 | 0.4946 |
| 7.7292 | 14500 | 0.4889 |
| 7.7825 | 14600 | 0.494 |
| 7.8358 | 14700 | 0.5026 |
| 7.8891 | 14800 | 0.5017 |
| 7.9424 | 14900 | 0.4965 |
| 7.9957 | 15000 | 0.5036 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 3
Model tree for Jimmy-Ooi/Tyrisonase_test_model_800_8epoch_wd_1.00
Base model
google-bert/bert-base-cased