SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
Lanche
  • 'X-Tudo completo'
  • 'X-Bacon artesanal'
  • 'Hamburguer duplo'
Japonesa
  • 'Barca de Sushi'
  • 'Temaki de Salmão'
  • 'Sashimi'
Brasileira
  • 'Feijoada completa'
  • 'Prato Feito (PF)'
  • 'Marmita'
Pizza/Massa
  • 'Pizza de Calabresa'
  • 'Pizza Portuguesa'
  • 'Pizza Marguerita'
Sobremesa
  • 'Petit Gateau'
  • 'Bolo de Chocolate'
  • 'Torta de Limão'
Bebida
  • 'Coca-Cola Zero'
  • 'Guaraná'
  • 'Suco de Laranja'
Petiscos
  • 'Batata Frita'
  • 'Batata Frita com queijo'
  • 'Porção de Batata'
Árabe
  • 'Esfiha de Carne'
  • 'Esfiha de Queijo'
  • 'Esfiha de Frango'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("JoaoVitorr/food-classification-model-v3")
# Run inference
preds = model("Mocotó")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 2.0837 5
Label Training Sample Count
Bebida 26
Brasileira 26
Japonesa 23
Lanche 30
Petiscos 27
Pizza/Massa 21
Sobremesa 30
Árabe 20

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (5, 5)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (1e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0039 1 0.3079 -
0.1969 50 0.2609 -
0.3937 100 0.2381 -
0.5906 150 0.2351 -
0.7874 200 0.2165 -
0.9843 250 0.1902 -
1.1811 300 0.1445 -
1.3780 350 0.1209 -
1.5748 400 0.0992 -
1.7717 450 0.0771 -
1.9685 500 0.0594 -
2.1654 550 0.0486 -
2.3622 600 0.0372 -
2.5591 650 0.0332 -
2.7559 700 0.0269 -
2.9528 750 0.0204 -
3.1496 800 0.0163 -
3.3465 850 0.0137 -
3.5433 900 0.0112 -
3.7402 950 0.0121 -
3.9370 1000 0.0104 -
4.1339 1050 0.0087 -
4.3307 1100 0.0079 -
4.5276 1150 0.008 -
4.7244 1200 0.0075 -
4.9213 1250 0.0075 -

Framework Versions

  • Python: 3.12.12
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.1
  • PyTorch: 2.8.0+cu126
  • Datasets: 4.0.0
  • Tokenizers: 0.22.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
12
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for JoaoVitorr/food-classification-model-v3