SetFit with JohanHeinsen/Old_News_Segmentation_SBERT_V0.1

This is a SetFit model that can be used for Text Classification. This SetFit model uses JohanHeinsen/Old_News_Segmentation_SBERT_V0.1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'En meget brav gammel adelig Dame i Augsburg, har legeret 600,000 Gylden til et Pigeinstitues Oprettelse.'
  • 'Efter indkommen Anmeldelse fra vedkommende Strandtoldbetjent er der løst af Havet inddrevet: paa Østeragger Strand 1 Oxhoved Viin mkt. J Feene paa Tolbøl Strand et Ditto Dito med samme Mærke, paa Hvidberg v. A. Strand 1 Ditto Dito mkt. DL. R. paa Ørum Strand 1 Ditto Dito mkt. 1 Pupaa Steenberg Strand 1 Ditto Dito mkt. NeEieren eller Eierne til fornævnte Oxhoveder Vine indkaldes herved sub poena præclusi et perpetui silentii med Aar og Dags Varsel at indfinde sig ved Amtet for at legitimere Eiendomsretten, hvorefter det indkommende Auctionsbeløb, med Fradrag af alle lovlige Udgifter, skal vorde Vedkommende udbetalt. Thisted Amthuus, den 24de August 1833. Faye.'
  • 'Ved Tallotteriets 1212te Trækning i Altona den 12te April udkom følgende Nummere:'
1
  • 'En Pige 15 Aar gammel, liden af Vext, navnlig Anne Marie, er den 25 May 1761. fra sine Forældre undvigt, og da hende en Arv er tilfalden, saa ombedes hun, eller hvo hende skulde forekomme, at formode hende at indfinde sig hos mig, boende i Nyeboder i Kiøbenhavn paa Elsdyrs-Længden i No. 18, som er hendes Fader, Christen Matros ved 4de Divisions 8de Compagnie.'
  • 'At fra Kronborg Fæstnings Arbeide den 2 Oct. Sidst er undvigt uærlige Slave Hans Hansen, fød i Roeskilde, 42 Aar gl., liden af Vext, maadelig af Lemmer, blaae af Øine og bruun af Haar, det bekiendtgiøres herved til alle og enhvers Efterretning ligesom man og tillige vil have enhver anmodet at anholde denne for den offentlige Sikkerhed farlige Person, hvor som helst han skulde antræffes, og derefter henbringe ham til nærmeste Arresthuus til Bevaring, hvorfra han, naar saadant Commandant-skabet paa Kronborg tilmeldes, strax skal vorde afhentet, og de paa hans Anholdelse, Arrest og Forplegning anvendte Bekostninger, samt de sædvanlige Opbringerpenge bliver betalt, og tiener tillige til Underretning, at fornævnte Slave ved sin Undvigelse ei havde andet end bare Skiorte paa Kroppen, men Slave Buxer, Strømper og Skoe paa Benene, og en rund Hat paa Hovedet, og har desuden et stort Ar paa det ene Been fra en langvarig Beenskade.'
  • 'Af Kongens Regiment har Mousqueteer Carl Sverling absenteret sig, samme var klæd i en graa Frakke, rød Manchesters Vest og Buxer, koparret af Ansigt, 23 Aar gl. 65, Tom. Høy; den som tager ham op, levere ham til Casernene imod Douceur efter Forordningen.'

Evaluation

Metrics

Label Accuracy F1 Precision Recall
all 0.9990 0.9916 0.9833 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("En ganske nye Vand-Filtrum af Holms Fabrik i Kjøbenhavn, destillerende 50 Potter Vand om Dagen er tilkjøbs i Stokkemarke Præstegaard.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 88.9318 1999
Label Training Sample Count
0 2093
1 149

Training Hyperparameters

  • batch_size: (12, 12)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 12
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0002 1 0.5665 -
0.0112 50 0.4302 -
0.0223 100 0.3677 -
0.0335 150 0.1981 -
0.0446 200 0.0642 -
0.0558 250 0.0272 -
0.0669 300 0.0083 -
0.0781 350 0.0114 -
0.0892 400 0.0038 -
0.1004 450 0.0036 -
0.1115 500 0.0023 -
0.1227 550 0.005 -
0.1338 600 0.0031 -
0.1450 650 0.0011 -
0.1561 700 0.0038 -
0.1673 750 0.0001 -
0.1784 800 0.0005 -
0.1896 850 0.0019 -
0.2007 900 0.0016 -
0.2119 950 0.0001 -
0.2230 1000 0.0014 -
0.2342 1050 0.0022 -
0.2453 1100 0.0021 -
0.2565 1150 0.0018 -
0.2676 1200 0.0002 -
0.2788 1250 0.0 -
0.2899 1300 0.0019 -
0.3011 1350 0.0 -
0.3122 1400 0.0 -
0.3234 1450 0.0036 -
0.3345 1500 0.0 -
0.3457 1550 0.0 -
0.3568 1600 0.0 -
0.3680 1650 0.0 -
0.3791 1700 0.0 -
0.3903 1750 0.0018 -
0.4014 1800 0.0001 -
0.4126 1850 0.0017 -
0.4237 1900 0.0 -
0.4349 1950 0.0 -
0.4460 2000 0.0 -
0.4572 2050 0.0035 -
0.4683 2100 0.0034 -
0.4795 2150 0.0036 -
0.4906 2200 0.0017 -
0.5018 2250 0.0056 -
0.5129 2300 0.0006 -
0.5241 2350 0.0 -
0.5352 2400 0.0 -
0.5464 2450 0.0 -
0.5575 2500 0.0016 -
0.5687 2550 0.0014 -
0.5798 2600 0.0 -
0.5910 2650 0.0012 -
0.6021 2700 0.0001 -
0.6133 2750 0.0 -
0.6244 2800 0.0 -
0.6356 2850 0.0 -
0.6467 2900 0.0 -
0.6579 2950 0.0 -
0.6690 3000 0.0016 -
0.6802 3050 0.0 -
0.6913 3100 0.0 -
0.7025 3150 0.0 -
0.7136 3200 0.0017 -
0.7248 3250 0.0012 -
0.7360 3300 0.0002 -
0.7471 3350 0.0 -
0.7583 3400 0.0 -
0.7694 3450 0.0 -
0.7806 3500 0.0 -
0.7917 3550 0.0 -
0.8029 3600 0.0 -
0.8140 3650 0.0 -
0.8252 3700 0.0 -
0.8363 3750 0.0 -
0.8475 3800 0.0 -
0.8586 3850 0.0 -
0.8698 3900 0.0 -
0.8809 3950 0.0 -
0.8921 4000 0.0 -
0.9032 4050 0.0 -
0.9144 4100 0.0 -
0.9255 4150 0.0 -
0.9367 4200 0.0 -
0.9478 4250 0.0 -
0.9590 4300 0.0 -
0.9701 4350 0.0 -
0.9813 4400 0.0 -
0.9924 4450 0.0 -
1.0036 4500 0.0 -
1.0147 4550 0.0 -
1.0259 4600 0.0 -
1.0370 4650 0.0 -
1.0482 4700 0.0 -
1.0593 4750 0.0 -
1.0705 4800 0.0 -
1.0816 4850 0.0 -
1.0928 4900 0.0 -
1.1039 4950 0.0 -
1.1151 5000 0.0 -
1.1262 5050 0.0 -
1.1374 5100 0.0 -
1.1485 5150 0.0 -
1.1597 5200 0.0 -
1.1708 5250 0.0 -
1.1820 5300 0.0 -
1.1931 5350 0.0 -
1.2043 5400 0.0 -
1.2154 5450 0.0 -
1.2266 5500 0.0 -
1.2377 5550 0.0 -
1.2489 5600 0.0 -
1.2600 5650 0.0 -
1.2712 5700 0.0 -
1.2823 5750 0.0 -
1.2935 5800 0.0 -
1.3046 5850 0.0 -
1.3158 5900 0.0 -
1.3269 5950 0.0 -
1.3381 6000 0.0 -
1.3492 6050 0.0 -
1.3604 6100 0.0 -
1.3715 6150 0.0 -
1.3827 6200 0.0 -
1.3938 6250 0.0 -
1.4050 6300 0.0 -
1.4161 6350 0.0 -
1.4273 6400 0.0 -
1.4384 6450 0.0 -
1.4496 6500 0.0 -
1.4607 6550 0.0 -
1.4719 6600 0.0 -
1.4831 6650 0.0 -
1.4942 6700 0.0 -
1.5054 6750 0.0 -
1.5165 6800 0.0 -
1.5277 6850 0.0 -
1.5388 6900 0.0 -
1.5500 6950 0.0 -
1.5611 7000 0.0 -
1.5723 7050 0.0 -
1.5834 7100 0.0 -
1.5946 7150 0.0 -
1.6057 7200 0.0 -
1.6169 7250 0.0 -
1.6280 7300 0.0 -
1.6392 7350 0.0 -
1.6503 7400 0.0 -
1.6615 7450 0.0 -
1.6726 7500 0.0 -
1.6838 7550 0.0 -
1.6949 7600 0.0 -
1.7061 7650 0.0 -
1.7172 7700 0.0 -
1.7284 7750 0.0 -
1.7395 7800 0.0 -
1.7507 7850 0.0 -
1.7618 7900 0.0 -
1.7730 7950 0.0 -
1.7841 8000 0.0 -
1.7953 8050 0.0 -
1.8064 8100 0.0 -
1.8176 8150 0.0 -
1.8287 8200 0.0 -
1.8399 8250 0.0 -
1.8510 8300 0.0 -
1.8622 8350 0.0 -
1.8733 8400 0.0 -
1.8845 8450 0.0 -
1.8956 8500 0.0 -
1.9068 8550 0.0 -
1.9179 8600 0.0 -
1.9291 8650 0.0 -
1.9402 8700 0.0 -
1.9514 8750 0.0 -
1.9625 8800 0.0 -
1.9737 8850 0.0 -
1.9848 8900 0.0 -
1.9960 8950 0.0 -

Framework Versions

  • Python: 3.11.12
  • SetFit: 1.1.3
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0
  • Datasets: 2.19.2
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
48
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for JohanHeinsen/ENO_Runaway_Advertisement_classifier_2.0

Evaluation results