test-segformer-1
This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5184
- Mean Iou: 0.5013
- Mean Accuracy: 0.6080
- Overall Accuracy: 0.8860
- Accuracy Background: 0.9710
- Accuracy Aeroplane: 0.7936
- Accuracy Bicycle: 0.6422
- Accuracy Bird: 0.6118
- Accuracy Boat: 0.4959
- Accuracy Bottle: 0.3990
- Accuracy Bus: 0.7997
- Accuracy Car: 0.7558
- Accuracy Cat: 0.8353
- Accuracy Chair: 0.3141
- Accuracy Cow: 0.4212
- Accuracy Diningtable: 0.2675
- Accuracy Dog: 0.5355
- Accuracy Horse: 0.5817
- Accuracy Motorbike: 0.7442
- Accuracy Person: 0.8677
- Accuracy Pottedplant: 0.3351
- Accuracy Sheep: 0.7845
- Accuracy Sofa: 0.3684
- Accuracy Train: 0.6319
- Accuracy Tvmonitor: 0.6111
- Iou Background: 0.9054
- Iou Aeroplane: 0.7364
- Iou Bicycle: 0.4610
- Iou Bird: 0.4835
- Iou Boat: 0.4281
- Iou Bottle: 0.3470
- Iou Bus: 0.7430
- Iou Car: 0.6847
- Iou Cat: 0.6004
- Iou Chair: 0.2188
- Iou Cow: 0.3697
- Iou Diningtable: 0.2446
- Iou Dog: 0.4173
- Iou Horse: 0.3859
- Iou Motorbike: 0.5811
- Iou Person: 0.7178
- Iou Pottedplant: 0.3016
- Iou Sheep: 0.5628
- Iou Sofa: 0.2973
- Iou Train: 0.5734
- Iou Tvmonitor: 0.4668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 99
Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Aeroplane | Accuracy Bicycle | Accuracy Bird | Accuracy Boat | Accuracy Bottle | Accuracy Bus | Accuracy Car | Accuracy Cat | Accuracy Chair | Accuracy Cow | Accuracy Diningtable | Accuracy Dog | Accuracy Horse | Accuracy Motorbike | Accuracy Person | Accuracy Pottedplant | Accuracy Sheep | Accuracy Sofa | Accuracy Train | Accuracy Tvmonitor | Iou Background | Iou Aeroplane | Iou Bicycle | Iou Bird | Iou Boat | Iou Bottle | Iou Bus | Iou Car | Iou Cat | Iou Chair | Iou Cow | Iou Diningtable | Iou Dog | Iou Horse | Iou Motorbike | Iou Person | Iou Pottedplant | Iou Sheep | Iou Sofa | Iou Train | Iou Tvmonitor |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.3686 | 21.7391 | 1000 | 0.5845 | 0.3211 | 0.4345 | 0.8352 | 0.9694 | 0.6936 | 0.5146 | 0.4319 | 0.4197 | 0.1345 | 0.3523 | 0.2277 | 0.6193 | 0.0743 | 0.3442 | 0.4724 | 0.5060 | 0.2571 | 0.5776 | 0.7439 | 0.2928 | 0.7685 | 0.2055 | 0.3511 | 0.1672 | 0.8669 | 0.5458 | 0.2152 | 0.3433 | 0.2435 | 0.1265 | 0.3481 | 0.1988 | 0.5060 | 0.0624 | 0.2761 | 0.3396 | 0.3731 | 0.2182 | 0.3127 | 0.6209 | 0.1716 | 0.3419 | 0.1634 | 0.3243 | 0.1455 |
| 0.2146 | 43.4783 | 2000 | 0.5172 | 0.4095 | 0.5204 | 0.8595 | 0.9684 | 0.6709 | 0.6059 | 0.4971 | 0.4196 | 0.2827 | 0.5828 | 0.3871 | 0.7104 | 0.2592 | 0.5440 | 0.2338 | 0.4815 | 0.3928 | 0.4747 | 0.8668 | 0.4723 | 0.7557 | 0.1945 | 0.5497 | 0.5785 | 0.8846 | 0.6450 | 0.3218 | 0.3542 | 0.3466 | 0.2658 | 0.4982 | 0.3832 | 0.5423 | 0.1800 | 0.4389 | 0.2254 | 0.3663 | 0.3070 | 0.3989 | 0.6469 | 0.2971 | 0.4598 | 0.1728 | 0.4736 | 0.3907 |
| 0.0919 | 65.2174 | 3000 | 0.5242 | 0.4735 | 0.5733 | 0.8780 | 0.9721 | 0.7582 | 0.5962 | 0.5413 | 0.4951 | 0.3764 | 0.8138 | 0.7061 | 0.8332 | 0.2066 | 0.2866 | 0.3386 | 0.5985 | 0.3335 | 0.6679 | 0.8557 | 0.4816 | 0.6698 | 0.2637 | 0.5505 | 0.6939 | 0.8981 | 0.7151 | 0.4401 | 0.4610 | 0.3947 | 0.3450 | 0.7176 | 0.6253 | 0.6174 | 0.1626 | 0.2620 | 0.2859 | 0.3921 | 0.2445 | 0.5372 | 0.7023 | 0.3574 | 0.5465 | 0.2268 | 0.5270 | 0.4854 |
| 0.0775 | 86.9565 | 4000 | 0.5184 | 0.5013 | 0.6080 | 0.8860 | 0.9710 | 0.7936 | 0.6422 | 0.6118 | 0.4959 | 0.3990 | 0.7997 | 0.7558 | 0.8353 | 0.3141 | 0.4212 | 0.2675 | 0.5355 | 0.5817 | 0.7442 | 0.8677 | 0.3351 | 0.7845 | 0.3684 | 0.6319 | 0.6111 | 0.9054 | 0.7364 | 0.4610 | 0.4835 | 0.4281 | 0.3470 | 0.7430 | 0.6847 | 0.6004 | 0.2188 | 0.3697 | 0.2446 | 0.4173 | 0.3859 | 0.5811 | 0.7178 | 0.3016 | 0.5628 | 0.2973 | 0.5734 | 0.4668 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 43
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for JunyaoPu/test-segformer-1
Base model
nvidia/mit-b0