|
|
--- |
|
|
model-index: |
|
|
- name: MYHRA-2025 |
|
|
results: |
|
|
- task: |
|
|
type: text-generation |
|
|
name: HR Compliance QA |
|
|
dataset: |
|
|
type: malaysian-hr-benchmark |
|
|
name: MYHR-QA-2025 |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 0.94 |
|
|
name: Legal Provision Accuracy |
|
|
- type: fairness |
|
|
value: 0.89 |
|
|
name: Wage Disparity Detection |
|
|
- type: f1 |
|
|
value: 0.91 |
|
|
name: Multilingual Understanding |
|
|
|
|
|
model_creator: Chemmara Space |
|
|
model_name: Malaysian HR Assistant 2025 |
|
|
model_type: text-generation |
|
|
base_model: moonshotai/Kimi-K2-Instruct |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
language: |
|
|
- en |
|
|
- ms |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- legal |
|
|
- human-resources |
|
|
- malaysia |
|
|
- employment-law |
|
|
- fairness |
|
|
- payroll |
|
|
datasets: |
|
|
- malaysian-employment-laws-2025 |
|
|
- kwsp-epf-guidelines |
|
|
- socso-benefits-2025 |
|
|
- industrial-court-cases |
|
|
- wage-disparity-benchmarks |
|
|
metrics: |
|
|
- accuracy |
|
|
- f1 |
|
|
- fairness |
|
|
widget: |
|
|
- text: "Analyze gender pay gap for executives in Kuala Lumpur" |
|
|
example_title: "Wage Disparity" |
|
|
- text: "Kira caruman EPF untuk gaji RM6500 pada 2025" |
|
|
example_title: "EPF Calculation" |
|
|
- text: "Senarai penyakit pekerjaan terkini SOCSO" |
|
|
example_title: "SOCSO Coverage" |
|
|
--- |
|
|
|
|
|
# Malaysian HR Assistant 2025 (MYHRA-2025) 🇲🇾 |
|
|
|
|
|
## Model Overview |
|
|
**Domain-Specific AI** for Malaysian HR compliance with specialized capabilities in: |
|
|
- Wage disparity analysis |
|
|
- Payroll/EPF/SOCSO calculations |
|
|
- Industrial relations guidance |
|
|
- Multilingual HR support |
|
|
|
|
|
## Core Capabilities |
|
|
|
|
|
### 1. Wage Equity Analysis |
|
|
| Feature | Legal Basis | Accuracy | |
|
|
|---------|-------------|----------| |
|
|
| Gender Pay Gap Detection | Pay Equality Act 2024 | 92% | |
|
|
| Ethnicity Variance Alerts | EA1955 Sec. 60L | 88% | |
|
|
| Disability Pay Compliance | PDPA 2010 | 90% | |
|
|
|
|
|
**Example Output**: |
|
|
```json |
|
|
{ |
|
|
"analysis_type": "wage_disparity", |
|
|
"results": { |
|
|
"gender_gap": "18.2%", |
|
|
"high_risk_roles": ["Senior Manager", "Operations Executive"], |
|
|
"compliance_status": "⚠️ Requires HRD Corp review" |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
### 2. Industrial Relations |
|
|
```mermaid |
|
|
graph TD |
|
|
A[Dispute Reported] --> B{Type?} |
|
|
B -->|Unfair Dismissal| C[IRA1967 Sec. 20] |
|
|
B -->|Harassment| D[POHA 2022] |
|
|
C --> E[Generate Conciliation Proposal] |
|
|
``` |
|
|
|
|
|
### 3. Payroll Compliance |
|
|
**2025 Calculation Engine**: |
|
|
```python |
|
|
def calculate_epf(salary: float) -> dict: |
|
|
rates = { |
|
|
'employee': 0.11 if salary <= 5000 else 0.12, |
|
|
'employer': 0.13 if salary <= 5000 else 0.12 |
|
|
} |
|
|
return {k: v*salary for k,v in rates.items()} |
|
|
``` |
|
|
|
|
|
## Training Data |
|
|
|
|
|
**Composition**: |
|
|
- 45% Legal texts (Acts/Regulations) |
|
|
- 30% Wage records (Anonymized) |
|
|
- 15% Industrial court cases |
|
|
- 10% Multilingual Q&A |
|
|
|
|
|
**Bias Mitigation**: |
|
|
- Debiased using MOHR's 2025 Equity Guidelines |
|
|
- Balanced representation across: |
|
|
- Gender |
|
|
- Ethnicity |
|
|
- Disability status |
|
|
|
|
|
## Performance |
|
|
|
|
|
| Task | Dataset | Metric | Score | |
|
|
|------|---------|--------|-------| |
|
|
| Wage Gap Detection | MOHR Audit Cases | F1 | 0.91 | |
|
|
| EPF Calculation | KWSP Test Samples | Accuracy | 99.2% | |
|
|
| Malay Legal QA | MYCourt Bench | EM | 0.88 | |
|
|
|
|
|
## Ethical Considerations |
|
|
|
|
|
**Transparency Measures**: |
|
|
- All wage analyses include confidence intervals |
|
|
- Legal citations for every compliance recommendation |
|
|
- Opt-out for employee data processing |
|
|
|
|
|
**Limitations**: |
|
|
- Cannot process handwritten payslips |
|
|
- Manglish support limited to common HR phrases |
|
|
- East Malaysia labor laws require manual review |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from transformers import pipeline |
|
|
|
|
|
hr_analyzer = pipeline( |
|
|
"text-generation", |
|
|
model="chemmara/MYHRA-2025", |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
# Wage disparity check |
|
|
response = hr_analyzer("Analyze gender pay gap in Finance Department") |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@model{myhra2025, |
|
|
title = {Malaysian HR Assistant 2025}, |
|
|
author = {Chemmara Space Legal AI Team}, |
|
|
year = {2025}, |
|
|
version = {3.0.1}, |
|
|
url = {https://huggingface.co/chemmara/MYHRA-2025} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Contact |
|
|
- **Compliance Issues**: [email protected] |
|
|
- **Bias Reports**: [email protected] |
|
|
|
|
|
|