CyberOSS-CVE
CyberOSS-CVE
Fine-tuned gpt-oss-20b on the AlicanKiraz0/All-CVE-Records-Training-Dataset using Unsloth with LoRA (rank 32) and merged back to BF16 for compatibility with vLLM, Hugging Face Transformers, and GGUF conversions.
Training Overview
- Base model:
unsloth/gpt-oss-20b-BF16 - Dataset:
AlicanKiraz0/All-CVE-Records-Training-Dataset - Hardware: single NVIDIA H100 80GB
- Sequence length: 2048
- Batch: 2 (grad accum 4 → effective 8)
- Learning rate: 2e-4, linear warmup 5 steps
- Steps: 100 for quick verification run (expand for full epoch)
- Loss masking: full conversation (system, user, assistant)
Files
model-0000X-of-00009.safetensors: merged BF16 shardsconfig.json: GPT-OSS architecture configtokenizer.jsonand template: Harmony/GPT-OSS chat formatchat_template.jinja: OpenAI Harmony-compatible chat template
Quick Usage (vLLM)
pip install vllm==0.11.2 transformers==4.57.2
python - <<'PY'
from vllm import LLM, SamplingParams
from transformers.processing_utils import ProcessorMixin
import transformers
transformers.ProcessorMixin = ProcessorMixin
llm = LLM(
model="Kushalkhemka/CyberOSS-CVE",
tokenizer="unsloth/gpt-oss-20b-BF16",
dtype="bfloat16",
)
prompt = "You are a cybersecurity assistant. Summarize CVE-2010-3763."
out = llm.generate([prompt], SamplingParams(max_tokens=128))[0]
print(out.outputs[0].text)
PY
HF Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Kushalkhemka/CyberOSS-CVE", torch_dtype="bfloat16", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("unsloth/gpt-oss-20b-BF16")
License
Matches upstream unsloth/gpt-oss-20b (LGPL-3.0). Respect dataset terms when redistributing.
- Downloads last month
- 39