bert-base-nsmc
This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0276
- Train Accuracy: 0.9925
- Validation Loss: 0.5285
- Validation Accuracy: 0.8774
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
- training_precision: float32
Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|---|---|---|---|---|
| 0.4092 | 0.8028 | 0.3115 | 0.8646 | 0 |
| 0.2206 | 0.9115 | 0.3285 | 0.8672 | 1 |
| 0.1044 | 0.9629 | 0.3914 | 0.8704 | 2 |
| 0.0479 | 0.9845 | 0.4957 | 0.8744 | 3 |
| 0.0276 | 0.9925 | 0.5285 | 0.8774 | 4 |
Framework versions
- Transformers 4.55.2
- TensorFlow 2.19.0
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 1
Model tree for Leegaeune/bert-base-nsmc
Base model
klue/bert-base