Apollo-1-2B / README.md
Spestly's picture
Update README.md
7354f15 verified
---
base_model:
- Qwen/Qwen3-1.7B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: other
license_name: anvdl-1.0
license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md
language:
- en
- fr
- pt
- de
- ro
- sv
- da
- bg
- ru
- cs
- el
- uk
- es
- nl
- sk
- hr
- pl
- lt
- nb
- nn
- fa
- sl
- gu
- lv
- it
- oc
- ne
- mr
- be
- sr
- lb
- vec
- as
- cy
- szl
- ast
- hne
- awa
- mai
- bho
- sd
- ga
- fo
- hi
- pa
- bn
- or
- tg
- yi
- lmo
- lij
- scn
- fur
- sc
- gl
- ca
- is
- sq
- li
- prs
- af
- mk
- si
- ur
- mag
- bs
- hy
- zh
- yue
- my
- ar
- he
- mt
- id
- ms
- tl
- ceb
- jv
- su
- min
- ban
- pag
- ilo
- war
- ta
- te
- kn
- ml
- tr
- az
- uz
- kk
- ba
- tt
- th
- lo
- fi
- et
- hu
- vi
- km
- ja
- ko
- ka
- eu
- ht
- pap
- kea
- tpi
- sw
---
![banner](https://huggingface.co/NoemaResearch/Apollo-1-4B/resolve/main/img/banner.png)
# Apollo-1-2B
[![Model](https://img.shields.io/badge/Model-Apollo--1--2B-blue)](https://huggingface.co/NoemaResearch/Apollo-1-2B)
[![Base](https://img.shields.io/badge/Base-Qwen3--1.7B-green)](https://huggingface.co/Qwen/Qwen3-1.7B)
[![License](https://img.shields.io/badge/License-Apache_2.0-yellow)](LICENSE)
Apollo-1-2B is a **2 billion parameter instruction-tuned model** developed by **Noema Research**.
It is based on [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) and optimized for **general reasoning, language understanding, and lightweight deployment**.
This model is the first release in the **Apollo series**, intended as a foundation for scalable experimentation and real-world applications in constrained environments.
---
## Model Overview
- **Base model:** `Qwen3-1.7B`
- **Architecture:** Decoder-only transformer
- **Parameters:** ~2B
- **Context length:** up to 32k tokens (inherits Qwen3 long-context support)
- **Domain:** General-purpose reasoning and instruction following
- **Primary applications:**
- Conversational AI
- Lightweight reasoning tasks
- Education and tutoring
- Prototype agents and assistants
- **License:** anvdl-1.0
---
## Key Features
- **Instruction tuned**: More reliable responses in conversational and task-oriented settings
- **Lightweight deployment**: Optimized for environments with limited compute or memory resources
- **Extended context**: Inherits long-context capability from Qwen3 base
- **Balanced outputs**: Improved refusal behaviors and reduced hallucinations compared to the base model
- **Multilingual ability**: Retains multilingual knowledge from Qwen3 family
---
## Usage
The model is available in Hugging Face Transformers format. Example:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "NoemaResearch/Apollo-1-2B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
messages = [
{"role":"system", "content":"You are Apollo, a reasoning assistant."},
{"role":"user", "content":"Explain the difference between supervised and unsupervised learning."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
````
**Recommended settings:**
* `temperature=0.5–0.9`
* `top_p=0.85–0.95`
* For structured outputs (e.g. JSON), use lower temperatures for stability
---
## Evaluation
Apollo-1-2B has been evaluated internally on a range of reasoning and language tasks. Key findings:
* Improved **instruction following** relative to Qwen3-1.7B
* More **concise and accurate responses** in structured tasks
* Maintains **multilingual performance** from the base model
* Effective for **lightweight assistant applications**
Future work will include publishing comprehensive benchmark comparisons against other models in the 1–3B parameter range.
---
## Limitations
* **Reasoning depth**: As a 2B parameter model, Apollo cannot match larger-scale LLMs on complex reasoning tasks
* **Knowledge coverage**: May lack depth in specialized or low-resource domains
* **Hallucinations**: Although reduced, the model may still generate incorrect or fabricated information
* **Sensitivity to prompts**: Outputs vary with prompt phrasing; careful prompt design recommended
---
## Responsible Use
* Do not rely on Apollo for critical decision-making without human oversight
* Generated outputs may contain inaccuracies; verification is required for factual or sensitive use cases
* Avoid providing personal, private, or sensitive information in prompts
* This model should not be used to generate disallowed, unsafe, or harmful content
---
## Model Variants
* **Full precision (safetensors)** — research and full-fidelity inference
* **bf16 / fp16** — optimized for inference on GPUs/TPUs
* **Quantized versions (int8 / int4)** — for deployment in constrained hardware environments
---
## Citation
If you use this model, please cite both Apollo-1-2B and the Qwen3 base model:
```bibtex
@misc{noema2025apollo,
title={Apollo-1-2B},
author={Noema Research},
year={2025},
howpublished={\url{https://huggingface.co/NoemaResearch/Apollo-1-2B}}
}
```
---
## Acknowledgements
Apollo-1-2B builds upon the [Qwen3](https://huggingface.co/Qwen) series of models.
We thank the Qwen team for making their work openly available under permissive terms, which enabled this derivative research.
---