layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6482
  • Answer: {'precision': 0.014705882352941176, 'recall': 0.021013597033374538, 'f1': 0.017302798982188297, 'number': 809}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
  • Question: {'precision': 0.12369791666666667, 'recall': 0.0892018779342723, 'f1': 0.10365521003818877, 'number': 1065}
  • Overall Precision: 0.0582
  • Overall Recall: 0.0562
  • Overall F1: 0.0572
  • Overall Accuracy: 0.3618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8182 1.0 10 1.6482 {'precision': 0.014705882352941176, 'recall': 0.021013597033374538, 'f1': 0.017302798982188297, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.12369791666666667, 'recall': 0.0892018779342723, 'f1': 0.10365521003818877, 'number': 1065} 0.0582 0.0562 0.0572 0.3618

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.15.2
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MangeshWasu/layoutlm-funsd

Finetuned
(178)
this model