mdeberta-v3-base-subjectivity-sentiment-bulgarian

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the CheckThat! Lab Task 1 Subjectivity Detection at CLEF 2025. It achieves the following results on the evaluation set:

  • Loss: 0.4555
  • Macro F1: 0.8291
  • Macro P: 0.8289
  • Macro R: 0.8293
  • Subj F1: 0.8100
  • Subj P: 0.8071
  • Subj R: 0.8129
  • Accuracy: 0.8312

Model description

This model is a fine-tuned mDeBERTaV3-base classifier designed for subjectivity detection in news articles, specifically for the Bulgarian language. It classifies sentences as either subjective (opinion-laden) or objective.

The core innovation of this approach, as detailed in the associated paper, is the enhancement of transformer-based embeddings by integrating sentiment scores derived from an auxiliary model. This sentiment-augmented architecture aims to improve upon standard fine-tuning, demonstrating significant performance boosts, particularly in subjective F1 score. The training also incorporates robust decision threshold calibration to effectively address class imbalance.

This model is part of the AI Wizards' participation in the CLEF 2025 CheckThat! Lab Task 1: Subjectivity Detection in News Articles. The broader research explored its application across monolingual, multilingual, and zero-shot settings.

Intended uses & limitations

This model is intended for classifying sentences as subjective or objective within news articles, which is a key component in combating misinformation, improving fact-checking pipelines, and supporting journalists. This specific checkpoint is optimized for the Bulgarian language.

Limitations:

  • While the sentiment-augmented approach showed consistent performance gains, the paper notes that BERT-like models still surpassed LLM baselines in various scenarios, indicating areas for further research.
  • The model's effectiveness may vary for domains or linguistic styles significantly different from the news articles it was trained on.
  • Generalization to other languages beyond those explicitly evaluated (Arabic, German, English, Italian, Bulgarian, Greek, Romanian, Polish, Ukrainian) is not guaranteed without further fine-tuning.

Training and evaluation data

This model was fine-tuned on the data provided for the CLEF 2025 CheckThat! Lab Task 1: Subjectivity Detection in News Articles. Training and development datasets were provided for various languages, including Bulgarian. The final evaluation included additional unseen languages to assess generalization capabilities.

To address class imbalance, a common issue across languages, decision threshold calibration was employed during training and optimized on the development set. The base model, microsoft/mdeberta-v3-base, was pretrained on a diverse multilingual corpus.

How to use

You can use this model directly with the Hugging Face transformers library:

import torch
import torch.nn as nn
from transformers import DebertaV2Model, DebertaV2Config, AutoTokenizer, PreTrainedModel, pipeline, AutoModelForSequenceClassification 
from transformers.models.deberta.modeling_deberta import ContextPooler

sent_pipe = pipeline(
    "sentiment-analysis",
    model="cardiffnlp/twitter-xlm-roberta-base-sentiment",
    tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment",
    top_k=None,  # return all 3 sentiment scores
)

class CustomModel(PreTrainedModel):
    config_class = DebertaV2Config
    def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs):
        super().__init__(config, *args, **kwargs)
        self.deberta = DebertaV2Model(config)
        self.pooler = ContextPooler(config)
        output_dim = self.pooler.output_dim
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)

    def forward(self, input_ids, positive, neutral, negative, token_type_ids=None, attention_mask=None, labels=None):
        outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
        encoder_layer = outputs[0]
        pooled_output = self.pooler(encoder_layer)
        sentiment_features = torch.stack((positive, neutral, negative), dim=1).to(pooled_output.dtype)
        combined_features = torch.cat((pooled_output, sentiment_features), dim=1)
        logits = self.classifier(self.dropout(combined_features))
        return {'logits': logits}

model_name = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-bulgarian"
tokenizer = AutoTokenizer.from_pretrained("microsoft/mdeberta-v3-base")
config = DebertaV2Config.from_pretrained(
    model_name, 
    num_labels=2, 
    id2label={0: 'OBJ', 1: 'SUBJ'}, 
    label2id={'OBJ': 0, 'SUBJ': 1},
    output_attentions=False, 
    output_hidden_states=False
)
model = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(model_name)

def classify_subjectivity(text: str):
    # get full sentiment distribution
    dist = sent_pipe(text)[0]
    pos = next(d["score"] for d in dist if d["label"] == "positive")
    neu = next(d["score"] for d in dist if d["label"] == "neutral")
    neg = next(d["score"] for d in dist if d["label"] == "negative")

    # tokenize the text
    inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')

    # feeding in the three sentiment scores
    with torch.no_grad():
        outputs = model(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            positive=torch.tensor(pos).unsqueeze(0).float(),
            neutral=torch.tensor(neu).unsqueeze(0).float(),
            negative=torch.tensor(neg).unsqueeze(0).float()
        )

    # compute probabilities and pick the top label
    probs = torch.softmax(outputs.get('logits')[0], dim=-1)
    label = model.config.id2label[int(probs.argmax())]
    score = probs.max().item()

    return {"label": label, "score": score}

examples = [
    "По принцип никой не иска войни, но за нещастие те се случват.",
    "В един момент започнал сам да търси изход за своето спасение и здраве",
]
for text in examples:
    result = classify_subjectivity(text)
    print(f"Text: {text}")
    print(f"→ Subjectivity: {result['label']} (score={result['score']:.2f})\n")

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Macro F1 Macro P Macro R Subj F1 Subj P Subj R Accuracy
No log 1.0 46 0.6893 0.4013 0.6563 0.5378 0.6282 0.4626 0.9784 0.4873
No log 2.0 92 0.5960 0.7650 0.7791 0.7616 0.7194 0.7982 0.6547 0.7739
No log 3.0 138 0.5138 0.7928 0.7939 0.7920 0.7664 0.7778 0.7554 0.7962
No log 4.0 184 0.4831 0.8054 0.8073 0.8042 0.7794 0.7970 0.7626 0.8089
No log 5.0 230 0.4792 0.8082 0.8115 0.8063 0.7807 0.8077 0.7554 0.8121
No log 6.0 276 0.4555 0.8291 0.8289 0.8293 0.8100 0.8071 0.8129 0.8312

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0

Code

The official code and materials for this project are available on GitHub: https://github.com/MatteoFasulo/clef2025-checkthat

Project Page

Explore the collection of models and interactive results on the Hugging Face Hub: AI Wizards @ CLEF 2025 - CheckThat! Lab - Task 1 Subjectivity

Citation

If you find our work helpful or inspiring, please feel free to cite it:

@misc{fasulo2025aiwizardscheckthat2025,
      title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles}, 
      author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
      year={2025},
      eprint={2507.11764},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2507.11764}, 
}
Downloads last month
3
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-bulgarian

Finetuned
(224)
this model

Dataset used to train MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-bulgarian

Collection including MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-bulgarian