BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
sentences = [
'Information on legal proceedings is included in Contact Email PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.',
'Where can information about legal proceedings be found in the financial statements?',
'What remaining authorization amount was available for share repurchases as of January 28, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.71 |
| cosine_accuracy@3 |
0.8429 |
| cosine_accuracy@5 |
0.8771 |
| cosine_accuracy@10 |
0.9143 |
| cosine_precision@1 |
0.71 |
| cosine_precision@3 |
0.281 |
| cosine_precision@5 |
0.1754 |
| cosine_precision@10 |
0.0914 |
| cosine_recall@1 |
0.71 |
| cosine_recall@3 |
0.8429 |
| cosine_recall@5 |
0.8771 |
| cosine_recall@10 |
0.9143 |
| cosine_ndcg@10 |
0.8152 |
| cosine_mrr@10 |
0.7832 |
| cosine_map@100 |
0.7867 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7029 |
| cosine_accuracy@3 |
0.8457 |
| cosine_accuracy@5 |
0.88 |
| cosine_accuracy@10 |
0.9157 |
| cosine_precision@1 |
0.7029 |
| cosine_precision@3 |
0.2819 |
| cosine_precision@5 |
0.176 |
| cosine_precision@10 |
0.0916 |
| cosine_recall@1 |
0.7029 |
| cosine_recall@3 |
0.8457 |
| cosine_recall@5 |
0.88 |
| cosine_recall@10 |
0.9157 |
| cosine_ndcg@10 |
0.8132 |
| cosine_mrr@10 |
0.78 |
| cosine_map@100 |
0.7833 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6986 |
| cosine_accuracy@3 |
0.8457 |
| cosine_accuracy@5 |
0.8786 |
| cosine_accuracy@10 |
0.9071 |
| cosine_precision@1 |
0.6986 |
| cosine_precision@3 |
0.2819 |
| cosine_precision@5 |
0.1757 |
| cosine_precision@10 |
0.0907 |
| cosine_recall@1 |
0.6986 |
| cosine_recall@3 |
0.8457 |
| cosine_recall@5 |
0.8786 |
| cosine_recall@10 |
0.9071 |
| cosine_ndcg@10 |
0.8072 |
| cosine_mrr@10 |
0.7746 |
| cosine_map@100 |
0.7782 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6914 |
| cosine_accuracy@3 |
0.8429 |
| cosine_accuracy@5 |
0.8714 |
| cosine_accuracy@10 |
0.9057 |
| cosine_precision@1 |
0.6914 |
| cosine_precision@3 |
0.281 |
| cosine_precision@5 |
0.1743 |
| cosine_precision@10 |
0.0906 |
| cosine_recall@1 |
0.6914 |
| cosine_recall@3 |
0.8429 |
| cosine_recall@5 |
0.8714 |
| cosine_recall@10 |
0.9057 |
| cosine_ndcg@10 |
0.8053 |
| cosine_mrr@10 |
0.7726 |
| cosine_map@100 |
0.7764 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6757 |
| cosine_accuracy@3 |
0.8114 |
| cosine_accuracy@5 |
0.85 |
| cosine_accuracy@10 |
0.8843 |
| cosine_precision@1 |
0.6757 |
| cosine_precision@3 |
0.2705 |
| cosine_precision@5 |
0.17 |
| cosine_precision@10 |
0.0884 |
| cosine_recall@1 |
0.6757 |
| cosine_recall@3 |
0.8114 |
| cosine_recall@5 |
0.85 |
| cosine_recall@10 |
0.8843 |
| cosine_ndcg@10 |
0.7836 |
| cosine_mrr@10 |
0.7509 |
| cosine_map@100 |
0.7558 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 4 tokens
- mean: 47.19 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 20.59 tokens
- max: 41 tokens
|
- Samples:
| positive |
anchor |
For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends. |
How much in dividends was recorded against retained earnings in 2023? |
In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share. |
By how much did the company increase its quarterly cash dividend in February 2023? |
Depreciation and amortization totaled $4,856 as recorded in the financial statements. |
How much did depreciation and amortization total to in the financial statements? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 40
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 20
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 40
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 20
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.9114 |
9 |
- |
0.7124 |
0.7361 |
0.7366 |
0.6672 |
0.7443 |
| 1.0127 |
10 |
2.0952 |
- |
- |
- |
- |
- |
| 1.9241 |
19 |
- |
0.7437 |
0.7561 |
0.7628 |
0.7172 |
0.7653 |
| 2.0253 |
20 |
1.1175 |
- |
- |
- |
- |
- |
| 2.9367 |
29 |
- |
0.7623 |
0.7733 |
0.7694 |
0.7288 |
0.7723 |
| 3.0380 |
30 |
0.6104 |
- |
- |
- |
- |
- |
| 3.9494 |
39 |
- |
0.7723 |
0.7746 |
0.7804 |
0.7405 |
0.7789 |
| 4.0506 |
40 |
0.4106 |
- |
- |
- |
- |
- |
| 4.9620 |
49 |
- |
0.7777 |
0.7759 |
0.7820 |
0.7475 |
0.7842 |
| 5.0633 |
50 |
0.314 |
- |
- |
- |
- |
- |
| 5.9747 |
59 |
- |
0.7802 |
0.7796 |
0.7856 |
0.7548 |
0.7839 |
| 6.0759 |
60 |
0.2423 |
- |
- |
- |
- |
- |
| 6.9873 |
69 |
- |
0.7756 |
0.7772 |
0.7834 |
0.7535 |
0.7818 |
| 7.0886 |
70 |
0.1962 |
- |
- |
- |
- |
- |
| 8.0 |
79 |
- |
0.7741 |
0.7774 |
0.7841 |
0.7551 |
0.7822 |
| 8.1013 |
80 |
0.1627 |
- |
- |
- |
- |
- |
| 8.9114 |
88 |
- |
0.7724 |
0.7752 |
0.7796 |
0.7528 |
0.7816 |
| 9.1139 |
90 |
0.1379 |
- |
- |
- |
- |
- |
| 9.9241 |
98 |
- |
0.7691 |
0.7782 |
0.7834 |
0.7559 |
0.7836 |
| 10.1266 |
100 |
0.1249 |
- |
- |
- |
- |
- |
| 10.9367 |
108 |
- |
0.7728 |
0.7802 |
0.7831 |
0.7536 |
0.7848 |
| 11.1392 |
110 |
0.1105 |
- |
- |
- |
- |
- |
| 11.9494 |
118 |
- |
0.7748 |
0.7785 |
0.7814 |
0.7558 |
0.7851 |
| 12.1519 |
120 |
0.1147 |
- |
- |
- |
- |
- |
| 12.9620 |
128 |
- |
0.7756 |
0.7788 |
0.7839 |
0.7550 |
0.7864 |
| 13.1646 |
130 |
0.098 |
- |
- |
- |
- |
- |
| 13.9747 |
138 |
- |
0.7767 |
0.7792 |
0.7828 |
0.7557 |
0.7873 |
| 14.1772 |
140 |
0.0927 |
- |
- |
- |
- |
- |
| 14.9873 |
148 |
- |
0.7758 |
0.7804 |
0.7847 |
0.7569 |
0.7892 |
| 15.1899 |
150 |
0.0921 |
- |
- |
- |
- |
- |
| 16.0 |
158 |
- |
0.7760 |
0.7794 |
0.7831 |
0.7551 |
0.7873 |
| 16.2025 |
160 |
0.0896 |
- |
- |
- |
- |
- |
| 16.9114 |
167 |
- |
0.7753 |
0.7799 |
0.7841 |
0.7570 |
0.7888 |
| 17.2152 |
170 |
0.0881 |
- |
- |
- |
- |
- |
| 17.9241 |
177 |
- |
0.7763 |
0.7787 |
0.7842 |
0.7561 |
0.7867 |
| 18.2278 |
180 |
0.0884 |
0.7764 |
0.7782 |
0.7833 |
0.7558 |
0.7867 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}