SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nutanix/bge-base-mbpp-processed")
# Run inference
sentences = [
'Write a function to find sum and average of first n natural numbers.',
'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n total = total + value\r\n average = total / number\r\n return (total,average)',
'def long_words(n, str):\r\n word_len = []\r\n txt = str.split(" ")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
sts-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9642 |
| dot_accuracy | 0.0358 |
| manhattan_accuracy | 0.9623 |
| euclidean_accuracy | 0.9642 |
| max_accuracy | 0.9642 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1bf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | sts-dev_max_accuracy |
|---|---|---|---|
| 0.0050 | 100 | 4.2871 | - |
| 0.0101 | 200 | 4.1063 | - |
| 0.0151 | 300 | 4.0535 | - |
| 0.0202 | 400 | 4.0162 | - |
| 0.0252 | 500 | 3.9802 | - |
| 0.0302 | 600 | 3.982 | - |
| 0.0353 | 700 | 3.9349 | - |
| 0.0403 | 800 | 3.9372 | - |
| 0.0453 | 900 | 3.9175 | - |
| 0.0504 | 1000 | 3.9201 | - |
| 0.0554 | 1100 | 3.9036 | - |
| 0.0605 | 1200 | 3.8985 | - |
| 0.0655 | 1300 | 3.8994 | - |
| 0.0705 | 1400 | 3.8979 | - |
| 0.0756 | 1500 | 3.8846 | - |
| 0.0806 | 1600 | 3.897 | - |
| 0.0857 | 1700 | 3.8779 | - |
| 0.0907 | 1800 | 3.895 | - |
| 0.0957 | 1900 | 3.8793 | - |
| 0.1008 | 2000 | 3.8677 | - |
| 0.1058 | 2100 | 3.8672 | - |
| 0.1109 | 2200 | 3.8744 | - |
| 0.1159 | 2300 | 3.8721 | - |
| 0.1209 | 2400 | 3.8554 | - |
| 0.1260 | 2500 | 3.8379 | - |
| 0.1310 | 2600 | 3.8477 | - |
| 0.1360 | 2700 | 3.8625 | - |
| 0.1411 | 2800 | 3.8426 | - |
| 0.1461 | 2900 | 3.8475 | - |
| 0.1512 | 3000 | 3.8462 | - |
| 0.1562 | 3100 | 3.8314 | - |
| 0.1612 | 3200 | 3.8227 | - |
| 0.1663 | 3300 | 3.8311 | - |
| 0.1713 | 3400 | 3.8305 | - |
| 0.1764 | 3500 | 3.8249 | - |
| 0.1814 | 3600 | 3.842 | - |
| 0.1864 | 3700 | 3.8259 | - |
| 0.1915 | 3800 | 3.8295 | - |
| 0.1965 | 3900 | 3.8217 | - |
| 0.2016 | 4000 | 3.8362 | - |
| 0.2066 | 4100 | 3.8354 | - |
| 0.2116 | 4200 | 3.8175 | - |
| 0.2167 | 4300 | 3.8108 | - |
| 0.2217 | 4400 | 3.84 | - |
| 0.2267 | 4500 | 3.8206 | - |
| 0.2318 | 4600 | 3.8065 | - |
| 0.2368 | 4700 | 3.8161 | - |
| 0.2419 | 4800 | 3.8234 | - |
| 0.2469 | 4900 | 3.8112 | - |
| 0.2519 | 5000 | 3.8006 | - |
| 0.2570 | 5100 | 3.7996 | - |
| 0.2620 | 5200 | 3.8104 | - |
| 0.2671 | 5300 | 3.7975 | - |
| 0.2721 | 5400 | 3.7944 | - |
| 0.2771 | 5500 | 3.8037 | - |
| 0.2822 | 5600 | 3.7996 | - |
| 0.2872 | 5700 | 3.7883 | - |
| 0.2923 | 5800 | 3.7978 | - |
| 0.2973 | 5900 | 3.7889 | - |
| 0.3023 | 6000 | 3.7794 | - |
| 0.3074 | 6100 | 3.7669 | - |
| 0.3124 | 6200 | 3.7844 | - |
| 0.3174 | 6300 | 3.7687 | - |
| 0.3225 | 6400 | 3.7915 | - |
| 0.3275 | 6500 | 3.7505 | - |
| 0.3326 | 6600 | 3.7979 | - |
| 0.3376 | 6700 | 3.7681 | - |
| 0.3426 | 6800 | 3.7738 | - |
| 0.3477 | 6900 | 3.7702 | - |
| 0.3527 | 7000 | 3.7679 | - |
| 0.3578 | 7100 | 3.7862 | - |
| 0.3628 | 7200 | 3.7718 | - |
| 0.3678 | 7300 | 3.7898 | - |
| 0.3729 | 7400 | 3.7832 | - |
| 0.3779 | 7500 | 3.7701 | - |
| 0.3829 | 7600 | 3.7805 | - |
| 0.3880 | 7700 | 3.7725 | - |
| 0.3930 | 7800 | 3.7476 | - |
| 0.3981 | 7900 | 3.7612 | - |
| 0.4031 | 8000 | 3.7555 | - |
| 0.4081 | 8100 | 3.7489 | - |
| 0.4132 | 8200 | 3.7507 | - |
| 0.4182 | 8300 | 3.741 | - |
| 0.4233 | 8400 | 3.7465 | - |
| 0.4283 | 8500 | 3.7445 | - |
| 0.4333 | 8600 | 3.7536 | - |
| 0.4384 | 8700 | 3.7279 | - |
| 0.4434 | 8800 | 3.745 | - |
| 0.4485 | 8900 | 3.7712 | - |
| 0.4535 | 9000 | 3.7429 | - |
| 0.4585 | 9100 | 3.7386 | - |
| 0.4636 | 9200 | 3.7328 | - |
| 0.4686 | 9300 | 3.735 | - |
| 0.4736 | 9400 | 3.7451 | - |
| 0.4787 | 9500 | 3.7292 | - |
| 0.4837 | 9600 | 3.7381 | - |
| 0.4888 | 9700 | 3.7346 | - |
| 0.4938 | 9800 | 3.7396 | - |
| 0.4988 | 9900 | 3.7122 | - |
| 0.5039 | 10000 | 3.7295 | - |
| 0.5089 | 10100 | 3.738 | - |
| 0.5140 | 10200 | 3.7272 | - |
| 0.5190 | 10300 | 3.7233 | - |
| 0.5240 | 10400 | 3.7066 | - |
| 0.5291 | 10500 | 3.713 | - |
| 0.5341 | 10600 | 3.7185 | - |
| 0.5392 | 10700 | 3.7236 | - |
| 0.5442 | 10800 | 3.7086 | - |
| 0.5492 | 10900 | 3.718 | - |
| 0.5543 | 11000 | 3.7296 | - |
| 0.5593 | 11100 | 3.7276 | - |
| 0.5643 | 11200 | 3.7164 | - |
| 0.5694 | 11300 | 3.7119 | - |
| 0.5744 | 11400 | 3.6979 | - |
| 0.5795 | 11500 | 3.7095 | - |
| 0.5845 | 11600 | 3.7067 | - |
| 0.5895 | 11700 | 3.7018 | - |
| 0.5946 | 11800 | 3.727 | - |
| 0.5996 | 11900 | 3.7136 | - |
| 0.6047 | 12000 | 3.7233 | - |
| 0.6097 | 12100 | 3.7076 | - |
| 0.6147 | 12200 | 3.7243 | - |
| 0.6198 | 12300 | 3.6966 | - |
| 0.6248 | 12400 | 3.7058 | - |
| 0.6298 | 12500 | 3.698 | - |
| 0.6349 | 12600 | 3.6934 | - |
| 0.6399 | 12700 | 3.7046 | - |
| 0.6450 | 12800 | 3.6986 | - |
| 0.6500 | 12900 | 3.7134 | - |
| 0.6550 | 13000 | 3.7019 | - |
| 0.6601 | 13100 | 3.7154 | - |
| 0.6651 | 13200 | 3.7056 | - |
| 0.6702 | 13300 | 3.6948 | - |
| 0.6752 | 13400 | 3.697 | - |
| 0.6802 | 13500 | 3.6998 | - |
| 0.6853 | 13600 | 3.6881 | - |
| 0.6903 | 13700 | 3.6982 | - |
| 0.6954 | 13800 | 3.6861 | - |
| 0.7004 | 13900 | 3.6816 | - |
| 0.7054 | 14000 | 3.7004 | - |
| 0.7105 | 14100 | 3.6895 | - |
| 0.7155 | 14200 | 3.7045 | - |
| 0.7205 | 14300 | 3.7078 | - |
| 0.7256 | 14400 | 3.6884 | - |
| 0.7306 | 14500 | 3.6839 | - |
| 0.7357 | 14600 | 3.6891 | - |
| 0.7407 | 14700 | 3.6864 | - |
| 0.7457 | 14800 | 3.7069 | - |
| 0.7508 | 14900 | 3.6879 | - |
| 0.7558 | 15000 | 3.7049 | - |
| 0.7609 | 15100 | 3.7099 | - |
| 0.7659 | 15200 | 3.6908 | - |
| 0.7709 | 15300 | 3.6973 | - |
| 0.7760 | 15400 | 3.6775 | - |
| 0.7810 | 15500 | 3.6776 | - |
| 0.7861 | 15600 | 3.706 | - |
| 0.7911 | 15700 | 3.6941 | - |
| 0.7961 | 15800 | 3.6974 | - |
| 0.8012 | 15900 | 3.6706 | - |
| 0.8062 | 16000 | 3.6922 | - |
| 0.8112 | 16100 | 3.6898 | - |
| 0.8163 | 16200 | 3.7005 | - |
| 0.8213 | 16300 | 3.691 | - |
| 0.8264 | 16400 | 3.7066 | - |
| 0.8314 | 16500 | 3.6959 | - |
| 0.8364 | 16600 | 3.6944 | - |
| 0.8415 | 16700 | 3.6724 | - |
| 0.8465 | 16800 | 3.6783 | - |
| 0.8516 | 16900 | 3.683 | - |
| 0.8566 | 17000 | 3.6929 | - |
| 0.8616 | 17100 | 3.6823 | - |
| 0.8667 | 17200 | 3.6737 | - |
| 0.8717 | 17300 | 3.6847 | - |
| 0.8768 | 17400 | 3.6786 | - |
| 0.8818 | 17500 | 3.7018 | - |
| 0.8868 | 17600 | 3.6944 | - |
| 0.8919 | 17700 | 3.687 | - |
| 0.8969 | 17800 | 3.6841 | - |
| 0.9019 | 17900 | 3.6764 | - |
| 0.9070 | 18000 | 3.6779 | - |
| 0.9120 | 18100 | 3.689 | - |
| 0.9171 | 18200 | 3.6837 | - |
| 0.9221 | 18300 | 3.7034 | - |
| 0.9271 | 18400 | 3.669 | - |
| 0.9322 | 18500 | 3.67 | - |
| 0.9372 | 18600 | 3.6868 | - |
| 0.9423 | 18700 | 3.6916 | - |
| 0.9473 | 18800 | 3.6751 | - |
| 0.9523 | 18900 | 3.6935 | - |
| 0.9574 | 19000 | 3.702 | - |
| 0.9624 | 19100 | 3.6761 | - |
| 0.9674 | 19200 | 3.6798 | - |
| 0.9725 | 19300 | 3.6844 | - |
| 0.9775 | 19400 | 3.6775 | - |
| 0.9826 | 19500 | 3.6679 | - |
| 0.9876 | 19600 | 3.6793 | - |
| 0.9926 | 19700 | 3.6833 | - |
| 0.9977 | 19800 | 3.6717 | - |
| 1.0 | 19846 | - | 0.9642 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 1
Model tree for Nutanix/bge-base-mbpp-processed
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy on sts devself-reported0.964
- Dot Accuracy on sts devself-reported0.036
- Manhattan Accuracy on sts devself-reported0.962
- Euclidean Accuracy on sts devself-reported0.964
- Max Accuracy on sts devself-reported0.964